frequency chirp
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 37)

H-INDEX

22
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4912
Author(s):  
Xiang Lu ◽  
Volker Pickert ◽  
Maher Al-Greer ◽  
Cuili Chen ◽  
Xiang Wang ◽  
...  

Silicon carbide devices have become increasingly popular in electric vehicles, predominantly due to their fast-switching speeds, which allow for the construction of smaller power converters. Temperature sensitive electrical parameters (TSEPs) can be used to determine the junction temperature, just like silicon-based power switches. This paper presents a new technique to estimate the junction temperature of a single-chip silicon carbide (SiC) metal–oxide–semiconductor field-effect transistor (MOSFET). During off-state operation, high-frequency chirp signals below the resonance frequency of the gate-source impedance are injected into the gate of a discrete SiC device. The gate-source voltage frequency response is captured and then processed using the fast Fourier transform. The data is then accumulated and displayed over the chirp frequency spectrum. Results show a linear relationship between the processed gate-source voltage and the junction temperature. The effectiveness of the proposed TSEPs is demonstrated in a laboratory scenario, where chirp signals are injected in a stand-alone biased discrete SiC module, and in an in-field scenario, where the TSEP concept is applied to a MOSFET operating in a DC/DC converter.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Melike Mohamedsedik ◽  
Lie-Juan Li ◽  
B. S. Xie

2021 ◽  
Author(s):  
Kun Wang ◽  
Xuehua Hu ◽  
Sayipjamal Dulat ◽  
Bai-Song Xie

2021 ◽  
Author(s):  
Emmanuel Kengne ◽  
Ahmed Lakhssassi

Abstract We consider the one-dimensional (1D) cubic-quintic Gross--Pitaevskii (GP)nequation, which governs the dynamics of Bose--Einstein condensate (BEC) matter waves with time-varying scattering length and loss/gain of atoms in a harmonic trapping potential. We derive the integrability conditions and the compensation condition for the 1D GP equation and obtain, with the help of a cubic-quintic nonlinear Schr\"{o}dinger (NLS) equation with self-steepening and self-frequency shift, exact analytical solitonlike solutions with the corresponding frequency chirp which describe the dynamics of femtosecond solitons and double-kink solitons propagating on a vanishing background. Our investigation shows that under the compensation condition, the matter wave solitons maintain a constant amplitude, the amplitude of the frequency chirp depends on the scattering length, while the motion of both the matter wave solitons and the corresponding chirp depend on the external trapping potential. More interesting, the frequency chirps are localized and their feature depends on the sign of the self-steepening parameter. Our study also shows that our exact solutions can be used to describe the compression of matter wave solitons when the absolute value of the s-wave scattering length increases with time.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Ding ◽  
Marc Rebholz ◽  
Lennart Aufleger ◽  
Maximilian Hartmann ◽  
Veit Stooß ◽  
...  

AbstractHigh-intensity ultrashort pulses at extreme ultraviolet (XUV) and x-ray photon energies, delivered by state-of-the-art free-electron lasers (FELs), are revolutionizing the field of ultrafast spectroscopy. For crossing the next frontiers of research, precise, reliable and practical photonic tools for the spectro-temporal characterization of the pulses are becoming steadily more important. Here, we experimentally demonstrate a technique for the direct measurement of the frequency chirp of extreme-ultraviolet free-electron laser pulses based on fundamental nonlinear optics. It is implemented in XUV-only pump-probe transient-absorption geometry and provides in-situ information on the time-energy structure of FEL pulses. Using a rate-equation model for the time-dependent absorbance changes of an ionized neon target, we show how the frequency chirp can be directly extracted and quantified from measured data. Since the method does not rely on an additional external field, we expect a widespread implementation at FELs benefiting multiple science fields by in-situ on-target measurement and optimization of FEL-pulse properties.


Sign in / Sign up

Export Citation Format

Share Document