An Indoor Positioning Algorithm Based on Received Signal Strength of WLAN

Author(s):  
Chuanjie Pei ◽  
Yanhong Cai ◽  
Zhengxin Ma
2004 ◽  
Vol 37 (7) ◽  
pp. 77-80
Author(s):  
Jaywon Chey ◽  
Jae Woong Chun ◽  
Suk Ja Kim ◽  
Jin Hyun Lee ◽  
Gyu-In Jee ◽  
...  

2013 ◽  
Vol 860-863 ◽  
pp. 2177-2181
Author(s):  
Xi Ran Wang ◽  
Huai Dong Liu ◽  
Yi Fan He ◽  
Qi Ming Zhao ◽  
He Wu

This paper proposes a Improved positioning algorithm of electrical partial discharge applied for substations. This algorithm is based on received signal strength indication, and taken practical condition of sensors into consideration by replenishing beacon nodes. Compared with traditional trilateral weighting positioning algorithm, this paper introduces indefinite amount of localization perpendicular lines and combined them with trilateral districts to calculate the weighting result, which can reduce error. This model meets the requirement of reality that the height of electrical discharge spots differentiate from the height of the plane formed by beacon nodes (signal sensors). The experimental result indicates that the revised position model proposed by this paper can effectively fit the condition of monitoring hardware. Error of this algorithm is less than that of traditional trilateral localization.


Author(s):  
Shih-Hau Fang

Indoor positioning systems have received increasing attention for supporting location-based services in indoor environments. Received signal strength (RSS), mostly utilized in Wi-Fi fingerprinting systems, is known to be unreliable due to two reasons: orientation mismatch and variations in hardware. This chapter introduces an approach based on histogram equalization to compensate for orientation mismatch in robust Wi-Fi localization. The proposed method involves converting the temporal-spatial radio signal strength into a reference function (i.e., equalizing the histogram). This chapter also introduces an enhanced positioning feature, which is called delta-fused principal strength, to enhance the robustness of Wi-Fi localization against the problem of heterogeneous hardware. This algorithm computes the pairwise delta RSS and then integrates with RSS using principal component analysis. The proposed methods effectively and efficiently improve the robustness of location estimation in the presence of mismatch orientation and hardware variations, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Peter Brida ◽  
Juraj Machaj

Medical implants based on wireless communication will play crucial role in healthcare systems. Some applications need to know the exact position of each implant. RF positioning seems to be an effective approach for implant localization. The two most common positioning data typically used for RF positioning are received signal strength and time of flight of a radio signal between transmitter and receivers (medical implant and network of reference devices with known position). This leads to positioning methods: received signal strength (RSS) and time of arrival (ToA). Both methods are based on trilateration. Used positioning data are very important, but the positioning algorithm which estimates the implant position is important as well. In this paper, the proposal of novel algorithm for trilateration is presented. The proposed algorithm improves the quality of basic trilateration algorithms with the same quality of measured positioning data. It is called Enhanced Positioning Trilateration Algorithm (EPTA). The proposed algorithm can be divided into two phases. The first phase is focused on the selection of the most suitable sensors for position estimation. The goal of the second one lies in the positioning accuracy improving by adaptive algorithm. Finally, we provide performance analysis of the proposed algorithm by computer simulations.


Sign in / Sign up

Export Citation Format

Share Document