scholarly journals ECOS: An energy-efficient cluster storage system

Author(s):  
Xiaojun Ruan ◽  
Shu Yin ◽  
Adam Manzanares ◽  
Jiong Xie ◽  
Zhiyang Ding ◽  
...  
2021 ◽  
Vol 13 (8) ◽  
pp. 4549
Author(s):  
Sara Salamone ◽  
Basilio Lenzo ◽  
Giovanni Lutzemberger ◽  
Francesco Bucchi ◽  
Luca Sani

In electric vehicles with multiple motors, the torque at each wheel can be controlled independently, offering significant opportunities for enhancing vehicle dynamics behaviour and system efficiency. This paper investigates energy efficient torque distribution strategies for improving the operational efficiency of electric vehicles with multiple motors. The proposed strategies are based on the minimisation of power losses, considering the powertrain efficiency characteristics, and are easily implementable in real-time. A longitudinal dynamics vehicle model is developed in Simulink/Simscape environment, including energy models for the electrical machines, the converter, and the energy storage system. The energy efficient torque distribution strategies are compared with simple distribution schemes under different standardised driving cycles. The effect of the different strategies on the powertrain elements, such as the electric machine and the energy storage system, are analysed. Simulation results show that the optimal torque distribution strategies provide a reduction in energy consumption of up to 5.5% for the case-study vehicle compared to simple distribution strategies, also benefiting the battery state of charge.


2017 ◽  
Vol 18 (9) ◽  
pp. 1370-1384
Author(s):  
Ji-guang Wan ◽  
Da-ping Li ◽  
Xiao-yang Qu ◽  
Chao Yin ◽  
Jun Wang ◽  
...  

2005 ◽  
Vol 884 ◽  
Author(s):  
Nahid Mohajeri ◽  
Ali T-Raissi

AbstractAt the Florida Solar Energy Center (FSEC), a research program is underway for developing a high-density hydrogen storage system based on amine-borane (AB) complexes. Due to their high hydrogen capacity, these hydrides have been employed, in the past, as disposable hydrogen sources for fuel cell applications. However, to meet the requirements for hydrogen storage onboard vehicles, it is essential that cost effective and energy efficient methods for the regeneration (i.e. hydrogenation) of the spent (dehydrogenated) AB complexes can be found that utilize only hydrogen and/or electricity (i.e. the only plausible hydrogen economy energy carriers).We are studying two ammoniaborane (NH3BH3)-based systems with high hydrogen storage capacity. The first system employs a borazine-cyclotriborazane cycle. Borazine is a product of NH3BH3 thermolysis. Cyclotriborazane is the inorganic analog of cyclohexane. The second system employs polymeric AB complexes such as poly-(aminoborane) and polyborazylene. Poly-(aminoborane), an inorganic analog of polyethylene, is also a product of amoniaborane thermolysis whilepolyborazylene is the product of borazine thermolysis.For the two systems above, we are developing regeneration (i.e. reduction of borazine, poly-(aminoborane) and polyborazylene) schemes based on: 1) catalytic hydrogenation and 2) indirect (multi-step) synthesis techniques.


Sign in / Sign up

Export Citation Format

Share Document