Isochronous load sharing principles for an islanded system with steam and gas turbine generators

Author(s):  
Krishnanjan Gubba Ravikumar ◽  
Brandon Bosley ◽  
Ty Clark ◽  
Julio Garcia
Author(s):  
Dennis M. Russom ◽  
Russell A. Leinbach ◽  
Helen J. Kozuhowski ◽  
Dana D. Golden

Operational availability of Gas Turbine Generator Sets (GTGs) aboard the U.S. Navy’s DDG 51 Class ships is being enhanced through the combined capabilities of the ship’s Integrated Condition Assessment System (ICAS) and the GTG’s Full Authority Digital Control (FADC). This paper describes the ICAS and FADC systems; their current capabilities and the vision of how those capabilities will evolve in order to improve equipment readiness and reduce life cycle costs.


Author(s):  
Martin Quin˜ones ◽  
Steve Mason ◽  
Allan Green

The US Navy has pursued gas turbine electric start systems since 2003. Such a system has been extensively tested at the Naval Surface Warfare Center, Carderock Division (NSWCCD) Land Based Engineering Site (LBES) in Philadelphia, PA. It was demonstrated on a General Electric (GE) LM2500 main propulsion engine as well as a Rolls Royce (RR) MT30 engine. Presently, the system is being refined and repackaged to undergo U.S. Navy qualification for production use. Given the performance success of electric start the next logical step is to extend its application to other engine lines such as the Ship Service Gas Turbine Generators (SSGTG). In order to facilitate platform integration, the electric start concept has been evolved into the Electric Start and Generation System (ESGS). As expected, this system has the ability to start a gas turbine by purely electrical means. Once the engine has reached idle speed or above, the ESGS becomes a generator capable of producing power. This power may be harnessed to address dark start capability on Surface Combatants. The ESGS configuration simplifies integration of bulk energy storage such as a flywheel device or battery pack. This will ensure availability to the engine under a loss of platform power scenario thus providing self-sustainability to all the gas turbine’s electrical functions. Another alternative is to continuously provide ESGS generated power back to the electrical grid in continuous support of the engine auxiliary systems. In this case, flywheels and batteries may be replaced by advanced transfer switches that redirect power where it is needed on demand. This paper describes a program undertaken by NSWCCD to carry out land based testing of an advanced design ESGS. An overview of system requirements is given from a perspective of platform integration. The system architecture is fully described. It is an evolution of ESGS technology that has been extensively tested on RR MT30 and GE LM2500 gas turbines at NSWCCD LBES. Compared with existing air and alternative hydraulic gas turbine starter systems, this system is more compact and provides the benefits of simplified platform integration. It incorporates energy storage to provide black start capability for the gas turbine. Battery and inertial energy storage technologies are discussed in detail for use with the ESGS.


2019 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
M. Sayuti ◽  
Silvira Maulinda

Increasing effectiveness is very important for companies to obtain success in their business processes. One example of increasing effectiveness is by evaluating the performance of production facilities in the company. PT. X is one of the chemical industry companies whose main production is urea fertilizer. One of the supporting processes of the production process is the Gas Turbine Generator (GTG) in the utility unit. In supporting the production process, GTG often experiences problems that directly hinder the production process. This study aims to analyze the effectiveness of Gas Turbine Generators by using the Overall Equipment Effectiveness (OEE) method. The results of the analysis show that the Turbine Gas Generator effectiveness level is 68.39% which indicates that the value of production effectiveness is considered reasonable, but shows there is a large space for improvement.


2003 ◽  
Vol 2003.13 (0) ◽  
pp. 142-144
Author(s):  
Kenichi Kashiwabara ◽  
Tomoji Hanatani ◽  
Yukio Kozai ◽  
Tadashi Katsuragi

Author(s):  
Tadashi Katsuragi ◽  
Kenichi Kashiwabara ◽  
Yukio Kouzai ◽  
Shoji Murakami

Author(s):  
F. K. Konig

The author states the basic philosophy for the installation of gas turbines burning blast-furnace gas in the power-generating systems of an iron and steel works. A description is given of the two gas-turbine generators at the Huttenwerk Rheinhausen, A.G. and their operating experience.


Author(s):  
Akili D. Khawaji ◽  
Tariq Khan ◽  
Jong-Mihn Wie

The Royal Commission power, desalination and seawater cooling (PD&SC) plant located in Madinat Yanbu Al-Sinaiyah, Saudi Arabia, includes eight MS-7001 E frame 7 gas turbine generators (GTGs). The GTGs are used in cogenerating electricity and process steam primarily required for desalinating seawater by a multi-stage flash (MSF) evaporation process. This paper describes the operating experience of the GTGs in a simple cycle and a cogeneration mode coupled to heat recovery steam generation. The significant problems, countermeasures and the GTG and heat recovery steam generator (HRSG) reliability, availability and performance are also discussed in the paper.


Author(s):  
Richard Halpin ◽  
Frank Sapienza

The destroyers of the USS Arleigh Burke Class all have 4 propulsion gas turbines and 3 gas turbine generators (GTGs). A typical at-sea “condition 3” operating profile consists of having 2 gas turbine generators running at approximately 50% capacity, and one propulsion gas turbine online at low to intermediate ship speeds. Having 2 GTGs online at all times at 50% load each provides the obvious advantage of maintaining all electric loads should one GTG shut down unexpectedly. This luxury does come at the cost of fuel efficiency, as gas turbines efficiency improves continuously as they move away from idle. On the propulsion end, a single gas turbine is capable of generating enough horsepower to propel the ship at speeds in excess of 20 knots. Depending upon the specific mission that the destroyer may be on, however, quite a bit of operating profile may be at speeds below 15 knots where the LM2500 is operating at less than 20% capacity. In this range of operation specific fuel consumption ratios are also relatively low. The proposed Hybrid Electric Drive (HED) system has the potential to address both of these inefficient ranges of operation. By installing one 2000 horsepower electric motor on each shaft, the electric motors can be used to propel the ship at speeds below 14 knots (projected) while running the GTGs up to 90% operating range where they are most efficient. The LM2500 is shut down completely at this range, and the potential fuel savings in this configuration is substantial. While there are many engineering challenges with installing such a HED system on board an in-service DDG, the focus of this paper is on how to integrate HED with the existing Machinery Control System (MCS). Such challenges include interfacing MCS to the HED supervisory controller, developing a new HED control interface for the propulsion control operator, integrating HED into the existing shaft speed control algorithm, transitioning to and from HED propulsion, and updating data logging to include HED. Managing the interface between current electric load, changing electric loads, and current available HED power will also be addressed.


Sign in / Sign up

Export Citation Format

Share Document