Dual Closed-Loop Scheme with Lead Compensator and Proportional Controller for Quasi Z-Source Inverter Based STATCOM

Author(s):  
Kah Haw Law ◽  
Wendy Pei Qin Ng
Author(s):  
Vincent Bonnet ◽  
Philippe Fraisse ◽  
Nacim Ramdani ◽  
Julien Lagarde ◽  
Sofiane Ramdani ◽  
...  

2021 ◽  
Vol 27 (1) ◽  
pp. 79-88
Author(s):  
Rafal Fawzi Faisal ◽  
Omar Waleed Abdulwahhab

This paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect of enhancing the relative stability of the closed-loop system by eliminating the oscillation in its transient part but at the expense of greater rise time. However, for some applications, long rise time may be an allowable price to get rid of undesired oscillation. To demonstrate the proposed hybrid controller's performance numerically, a new performance index, designated by Integral Reciprocal Time Absolute Error (IRTAE), is defined as a figure to measure the oscillation of the response in its transient part. The proposed controller enhances this performance index by 0.6771%. Although the relative enhancement of the performance index is small, it contributes to eliminating the oscillation of the response in its transient part. Simulation results are performed on the MATLAB/Simulink environment.


2019 ◽  
Vol 32 (4) ◽  
pp. 581-600
Author(s):  
Radmila Gerov ◽  
Zoran Jovanovic

The paper proposes a new method of identifying the linear model of a DC motor. The parameter estimation is based on the closed-loop step response of the DC motor under a proportional controller. For the application of the method, a deliberate delay of the measured speed was introduced. The paper considers the speed regulation of the direct current motor with negligible inductance by applying 1-DOF and 2-DOF, proportional integral retarded controllers. The proportional and integral gain of the PI retarded controllers was received by using a pole placement method on the identified model. The Lambert W function was applied for the identification and in designing the controller with the purpose of finding the rightmost poles of the closed-loop as well as the boundary conditions for selecting the gain of the PI controller. The robustness of the calculated controllers was considered under the effect of an disturbance, uncertainty in each of the DC motor parameters as well as perturbations in time delay.


2004 ◽  
Vol 45 (6) ◽  
pp. 801-818 ◽  
Author(s):  
David Harrison ◽  
Yong Xia ◽  
Shivkumar Kalyanaraman ◽  
Arvind Venkatesan
Keyword(s):  

Author(s):  
Abhishek Dhanda

In this paper, we extend the phase-plane based closed-loop scheme of implementing commands shaped with vibration-reduction filters. A generalized shaping filter is considered in this work which can have negative impulse intensities and different acceleration and deceleration limits. Switching conditions are derived in terms of the filter parameters for both convolution-based and closed-form based shaping techniques. Analytical expressions are provided for the switching curves and various schemes are discussed for selecting appropriate phase-planes and implementing shaped-commands on real-time servomechanisms.


2018 ◽  
Vol 10 (4) ◽  
pp. 195
Author(s):  
Norma Amalia ◽  
Eka Setia Nugraha ◽  
Muntaqo Alfin Amanaf

LTE downlink is using Orthogonal Frequency Division Multiple Access (OFDMA) multiple access system which have high invulnerability from multipath problem. One of the weakness of OFDM system is the high level from Peak to Average Power Ratio (PAPR) that was required higher level transmit power for maintaining the Bit Error Rate (BER) requirement. Using uplink scheme with Single Carrier FDMA (SC-FDMA) which is OFDMA modification, will be offered better level of PAPR than its conventional OFDM. The main problem of using OFDMA is the high level of PAPR, while using SC-FDMA the problem is intra-cell interference. Intra-cell or inter-cell interference is the common problem that can reduce the LTE performance. Minimizing received power for each users (UE) which is still at acceptable tolerance parameter, can be used for reducing the interference problem to another UE. Power control is the appropriate solution for minimizing the interference level. In this paper will be analyzed the power control using open loop and closed loop scheme at LTE network. The simulation result show that without power control schemes, the transmit power of UE is 23 dBm. While, after applying power control scheme, the transmit power is 18.8 dBm at ?=0.4 of open loop condition and 9.05 dBm at closed loop condition. Using this transmit power value as the UE power can improve the SINR performance. The SINR average value without power control scheme is only 20.38 dB which is lower than using open loop scheme is achieved 22.44 dB and 24.02 dB at closed loop scheme.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 166 ◽  
Author(s):  
E Govinda Kumar ◽  
R Prakash ◽  
S Rishivanth ◽  
S A. Anburaja ◽  
A Gopi Krishna

This paper addresses the position control of antenna azimuth using proportional and integral (PI) controller and lead compensators. The fractional order calculus plays an important role for designing the robust control. The fractional order lead compensator is proposed for enhancing the closed loop performance of azimuth position control of antenna system. From the comparison of the closed loop responses, the proposed lead compensator delivers a superior closed loop performance when compared with PI controller and lead compensator. 


Author(s):  
M. Isabel Neria-Gonzalez ◽  
Ricardo Aguilar-López

This work is related to the tracking of sulfate concentration trajectories in a continuous anaerobic bioreactor, where Desulfovibrio alaskensis is considered for different operation purposes. A new design of a class of nonlinear proportional control law with an adaptive gain was proposed. The proposed controller was applied to the mathematical bioreactor's model with the kinetics experimentally corroborated; this describes the dynamics of biomass, sulfate and sulfide concentrations. The open-loop stability conditions of the optimum set points and the corresponding closed-loop performances were analyzed. The proposed control law is able to track trajectories, despite sustained disturbances. An Internal Model Control (IMC) Proportional-Integral Controller was implemented for comparison purposes and the corresponding performances were illustrated via numerical experiments.


1976 ◽  
Vol 20 (3) ◽  
pp. 235-243 ◽  
Author(s):  
B. Bechtle ◽  
C. Schunemann ◽  
G. Skudelny ◽  
V. Zimmermann

Sign in / Sign up

Export Citation Format

Share Document