scholarly journals Design of a PID-Lead Compensator for a Twin Rotor Aerodynamic System (TRAS)

2021 ◽  
Vol 27 (1) ◽  
pp. 79-88
Author(s):  
Rafal Fawzi Faisal ◽  
Omar Waleed Abdulwahhab

This paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect of enhancing the relative stability of the closed-loop system by eliminating the oscillation in its transient part but at the expense of greater rise time. However, for some applications, long rise time may be an allowable price to get rid of undesired oscillation. To demonstrate the proposed hybrid controller's performance numerically, a new performance index, designated by Integral Reciprocal Time Absolute Error (IRTAE), is defined as a figure to measure the oscillation of the response in its transient part. The proposed controller enhances this performance index by 0.6771%. Although the relative enhancement of the performance index is small, it contributes to eliminating the oscillation of the response in its transient part. Simulation results are performed on the MATLAB/Simulink environment.

2021 ◽  
Vol 27 (1) ◽  
pp. 79-88
Author(s):  
Rafal Fawzi Faisal ◽  
Omar Waleed Abdulwahhab

This paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect of enhancing the relative stability of the closed-loop system by eliminating the oscillation in its transient part but at the expense of greater rise time. However, for some applications, long rise time may be an allowable price to get rid of undesired oscillation. To demonstrate the proposed hybrid controller's performance numerically, a new performance index, designated by Integral Reciprocal Time Absolute Error (IRTAE), is defined as a figure to measure the oscillation of the response in its transient part. The proposed controller enhances this performance index by 0.6771%. Although the relative enhancement of the performance index is small, it contributes to eliminating the oscillation of the response in its transient part. Simulation results are performed on the MATLAB/Simulink environment.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 342
Author(s):  
Sneha Nayak ◽  
Sravani Vemulapalli ◽  
Santhosh Krishnan Venkata ◽  
Meghana Shankar

Background: This paper presents a soft sensor design technique for the estimation of pitch and yaw angular positions of a Twin Rotor MIMO System (TRMS). The objective of the proposed work was to calculate the value of pitch and yaw angular positions using a stochastic estimation technique.  Methods: Measurements from optical sensors were used to measure fan blade rotations per minute (RPM).  The Kalman filter, which is a stochastic estimator, was used in the proposed system and its results were compared with those of the Luenberger observer and neural network. The Twin Rotor MIMO System is a nonlinear system with significant cross-coupling between its rotors.  Results: The estimators were designed for the decoupled system and were applied in real life to the coupled TRMS. The convergence of estimation to the actual values was checked on a practical setup. The Kalman filter estimators were evaluated for various inputs and disturbances, and the results were corroborated in real-time.  Conclusion:  From the proposed work it was seen that the Kalman filter had at least Integral Absolute Error (IAE), Integral Square Error (ISE), Integral Time Absolute Error (ITAE) as compared to the neural network and the Luenberger based observer.


2021 ◽  
Vol 26 (1) ◽  
pp. 21
Author(s):  
Ahmad Taher Azar ◽  
Fernando E. Serrano ◽  
Nashwa Ahmad Kamal

In this paper, a loop shaping controller design methodology for single input and a single output (SISO) system is proposed. The theoretical background for this approach is based on complex elliptic functions which allow a flexible design of a SISO controller considering that elliptic functions have a double periodicity. The gain and phase margins of the closed-loop system can be selected appropriately with this new loop shaping design procedure. The loop shaping design methodology consists of implementing suitable filters to obtain a desired frequency response of the closed-loop system by selecting appropriate poles and zeros by the Abel theorem that are fundamental in the theory of the elliptic functions. The elliptic function properties are implemented to facilitate the loop shaping controller design along with their fundamental background and contributions from the complex analysis that are very useful in the automatic control field. Finally, apart from the filter design, a PID controller loop shaping synthesis is proposed implementing a similar design procedure as the first part of this study.


Sign in / Sign up

Export Citation Format

Share Document