lead compensator
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 18)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Rafael Escudero ◽  
Luis Ibarra ◽  
Pedro Ponce ◽  
Arturo Molina
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ibrahim M. Mehedi ◽  
Mohd Heidir Mohd Shah ◽  
Rahtul Jannat

Dynamic inverse- (DI-) based control technique has been utilized in many applications and proven to be effective. Recently, the inverse dynamic control (IDC), an expansion to the classical DI technique, has been trending with implementation in many areas. It has been proved that IDC is capable of overcoming some limitations in DI-based techniques, particularly in cancellation of useful nonlinearities. This paper extends the implementation of IDC on the positional and speed control of the linear servo cart system. Simulation results further proves that IDC is an effective and robust controller evidently when comparing it with the proportional velocity and lead compensator controller.


2021 ◽  
Vol 5 (2) ◽  
pp. 46
Author(s):  
Evisa Memlikai ◽  
Stavroula Kapoulea ◽  
Costas Psychalinos ◽  
Jerzy Baranowski ◽  
Waldemar Bauer ◽  
...  

An alternative procedure for the implementation of fractional-order compensators is presented in this work. The employment of a curve-fitting-based approximation technique for the approximation of the compensator transfer function offers improved accuracy compared to the Oustaloup and Padé methods. As a design example, a lead compensator intended for usage in car suspension systems is realized. The open-loop and closed-loop behavior of the system is evaluated by post-layout simulation results obtained using the Cadence IC design suite and the Metal Oxide Semiconductor (MOS) transistor models provided by the Austria Mikro Systeme 0.35 m Complementary Metal Oxide Semiconductor (CMOS) process. The derived results verify the efficient performance of the introduced implementation.


2021 ◽  
Vol 13 (2) ◽  
pp. 505
Author(s):  
Sumaya Jahan ◽  
Shuvra Prokash Biswas ◽  
Md. Kamal Hosain ◽  
Md. Rabiul Islam ◽  
Safa Haq ◽  
...  

The use of different control techniques has become very popular for controlling the performance of grid-connected photovoltaic (PV) systems. Although the proportional-integral (PI) control technique is very popular, there are some difficulties such as less stability, slow dynamic response, low reference tracking capability, and lower output power quality in solar PV applications. In this paper, a robust, fast, and dynamic proportional-integral resonance controller with a harmonic and lead compensator (PIR + HC + LC) is proposed to control the current of a 15-level neutral-point-clamped (NPC) multilevel inverter. The proposed controlled is basically a proportional-integral resonance (PIR) controller with the feedback of a harmonic compensator and a lead compensator. The performance of the proposed controller is analyzed in a MATLAB/Simulink environment. The simulation result represents admirable performance in terms of stability, sudden load change response, fault handling capability, reference tracking capability, and total harmonic distortion (THD) than those of the existing controllers. The responses of the inverter and grid outlets under different conditions are also analyzed. The harmonic compensator decreases the lower order harmonics of grid voltage and current, and the lead compensator provides the phase lead. It is expected that the proposed controller is a dynamic aspirant in the grid-connected PV system.


2021 ◽  
Vol 27 (1) ◽  
pp. 79-88
Author(s):  
Rafal Fawzi Faisal ◽  
Omar Waleed Abdulwahhab

This paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect of enhancing the relative stability of the closed-loop system by eliminating the oscillation in its transient part but at the expense of greater rise time. However, for some applications, long rise time may be an allowable price to get rid of undesired oscillation. To demonstrate the proposed hybrid controller's performance numerically, a new performance index, designated by Integral Reciprocal Time Absolute Error (IRTAE), is defined as a figure to measure the oscillation of the response in its transient part. The proposed controller enhances this performance index by 0.6771%. Although the relative enhancement of the performance index is small, it contributes to eliminating the oscillation of the response in its transient part. Simulation results are performed on the MATLAB/Simulink environment.


2021 ◽  
Vol 40 (1) ◽  
pp. 43-48
Author(s):  
Peddada Satya Ravi Teja ◽  
Sai Srikar Annamraju ◽  
Ramakalyan Ayyagari

2021 ◽  
Vol 27 (1) ◽  
pp. 79-88
Author(s):  
Rafal Fawzi Faisal ◽  
Omar Waleed Abdulwahhab

This paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect of enhancing the relative stability of the closed-loop system by eliminating the oscillation in its transient part but at the expense of greater rise time. However, for some applications, long rise time may be an allowable price to get rid of undesired oscillation. To demonstrate the proposed hybrid controller's performance numerically, a new performance index, designated by Integral Reciprocal Time Absolute Error (IRTAE), is defined as a figure to measure the oscillation of the response in its transient part. The proposed controller enhances this performance index by 0.6771%. Although the relative enhancement of the performance index is small, it contributes to eliminating the oscillation of the response in its transient part. Simulation results are performed on the MATLAB/Simulink environment.


Sign in / Sign up

Export Citation Format

Share Document