Torque ripple minimization in switched reluctance motors using fuzzy-neural network inverse learning control

Author(s):  
Zheng Hongtao ◽  
Lin Feng ◽  
Liu Liangen ◽  
Jiang Jingping ◽  
Xu Dehong
Author(s):  
Baoming Ge ◽  
Aníbal T. de Almeida

Applications of switched reluctance motor (SRM) to direct drive robot are increasingly popular because of its valuable advantages. However, the greatest potential defect is its torque ripple owing to the significant nonlinearities. In this paper, a fuzzy neural network (FNN) is applied to control the SRM torque at the goal of the torque-ripple minimization. The desired current provided by FNN model compensates the nonlinearities and uncertainties of SRM. On the basis of FNN-based current closed-loop system, the trajectory tracking controller is designed by using the dynamic model of the manipulator, where the torque control method cancels the nonlinearities and cross-coupling terms. A single link robot manipulator directly driven by a four-phase 8/6-pole SRM operates in a sinusoidal trajectory tracking rotation. The simulated results verify the proposed control method and a fast convergence that the robot manipulator follows the desired trajectory in a 0.9-s time interval.


Author(s):  
Baoming Ge ◽  
Aníbal T. de Almeida

Applications of switched reluctance motor (SRM) to direct drive robot are increasingly popular because of its valuable advantages. However, the greatest potential defect is its torque ripple owing to the significant nonlinearities. In this paper, a fuzzy neural network (FNN) is applied to control the SRM torque at the goal of the torque-ripple minimization. The desired current provided by FNN model compensates the nonlinearities and uncertainties of SRM. On the basis of FNN-based current closed-loop system, the trajectory tracking controller is designed by using the dynamic model of the manipulator, where the torque control method cancels the nonlinearities and cross-coupling terms. A single link robot manipulator directly driven by a four-phase 8/6-pole SRM operates in a sinusoidal trajectory tracking rotation. The simulated results verify the proposed control method and a fast convergence that the robot manipulator follows the desired trajectory in a 0.9-s time interval.


2011 ◽  
Vol 467-469 ◽  
pp. 1645-1650
Author(s):  
Xiao Li ◽  
Xia Hong ◽  
Ting Guan

To solve the problem of the delay, nonlinearity and time-varying properties of PMA-actuated knee-joint rehabilitation training device, a self-learning control method based on fuzzy neural network is proposed in this paper. A self-learning controller was designed based on the combination of pid controller, feedforward controller, fuzzy neural network controller, and learning mechanism. It was applied to the isokinetic continuous passive motion control of the PMA-actuated knee-joint rehabilitation training device. The experiments proved that the self-learning controller has the properties of high control accuracy and unti-disturbance capability, comparing with pid controller. This control method provides the beneficial reference for improving the control performance of such system.


2013 ◽  
Vol 284-287 ◽  
pp. 1759-1763
Author(s):  
Ying Chung Wang ◽  
Chiang Ju Chien ◽  
Chi Nan Chuang

A backstepping adaptive iterative learning control for robotic systems with repetitive tasks is proposed in this paper. The backstepping-like procedure is introduced to design the AILC. A fuzzy neural network is applied for compensation of the unknown certainty equivalent controller. Using a Lyapunov like analysis, we show that the adjustable parameters and internal signals remain bounded, the tracking error will asymptotically converge to zero as iteration goes to infinity.


Sign in / Sign up

Export Citation Format

Share Document