Sensorless direct torque and flux control for matrix converter-fed interior permanent magnet synchronous motor using adaptive sliding mode observer

Author(s):  
D Xiao ◽  
M F Rahman
Author(s):  
Kaihui Zhao ◽  
Ruirui Zhou ◽  
Jinhua She ◽  
Aojie Leng ◽  
Wangke Dai ◽  
...  

In this paper, a novel method is presented to improve the speed-sensorless control performance of an interior permanent magnet synchronous motor using a nonsingular fast terminal sliding-mode observer and fractional-order software phase-locked loop. The interior permanent magnet synchronous motor system is first described. Next, a nonsingular fast terminal sliding mode observer is constructed to estimate the d-q-axis back electromotive force. The speed and position of the rotor are then accurately tracked using a fractional-order software phase-locked loop. The effectiveness and feasibility are verified through a simulation in MATLAB/Simulink. The results show an excellent performance despite a fluctuation in speed and torque ripple.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3773 ◽  
Author(s):  
Ye ◽  
Shi ◽  
Wang ◽  
Li ◽  
Xia

Different from the traditional method of the interior permanent magnet synchronous motor (IPMSM), the sensorless maximum torque per ampere (MTPA) control scheme in this paper does not need two observers for rotor position and d-q axis inductances, respectively. It only needs an adaptive sliding mode observer (ASMO) based on the extended flux (EF) to realize double-loop control and MTPA operation simultaneously. The adaptive mechanism of rotor speed is designed to ensure stability of the ASMO. The rotor position and the difference between d-axis and q-axis inductances are obtained from the estimated EF to acquire the MTPA points when the position sensor of the IPMSM is absent. The proposed scheme is realized on a 20kW IPMSM where the sensorless control performance and the MTPA control performance are tested. The effectiveness of the proposed method is verified by the experiment results.


Sign in / Sign up

Export Citation Format

Share Document