Novel method for controlling a high-frequency link inverter using cycloconverter techniques

Author(s):  
K. Tazume ◽  
T. Aoki ◽  
T. Yamashita
Keyword(s):  
2014 ◽  
Vol 252 (11) ◽  
pp. 1697-1703 ◽  
Author(s):  
Nicolay Umanets ◽  
Natalya V. Pasyechnikova ◽  
Vladimir A. Naumenko ◽  
Paul B. Henrich

Author(s):  
Nikolai Suvorov ◽  
Alexander Belov ◽  
Timofey Sergeev ◽  
Konstantin Kuliabin ◽  
Aleksei Anisimov

2014 ◽  
Vol 28 (05) ◽  
pp. 1450035 ◽  
Author(s):  
Wen-Xia Sima ◽  
Ming Yang ◽  
Qing Yang ◽  
Tao Yuan ◽  
Mi Zou

A novel method for fundamental ferroresonance suppression is proposed in this paper. The suppression mechanism is analyzed based on the harmonic balance method and a novel method for fundamental ferroresonance suppression is proposed. Experiments show that the fundamental ferroresonance with different saturation degrees can be suppressed by a single damping resistor controlled by the high frequency controllable switches located in the suppression module.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 277-277
Author(s):  
Imran A Siddiqui ◽  
Russell C. Kirks ◽  
Erin H Baker ◽  
Eduardo Latouche ◽  
Matt Dewitt ◽  
...  

277 Background: Irreversible electroporation unlike ablation is excellent in inducing cell death via apoptosis. It, however, has disadvantages of electrical conduction via cardiac and nervous tissue. This results in requiring cardiac monitoring and general anesthesia and paralytics while performing electroporation. We hypothesized a novel high-frequency IRE (H-FIRE) system employing ultra-short bipolar pulses would obviate the need for cardiac synchronization and paralytics while maintaining measurable effect on cell death. Methods: Female swine (55-65Kg) were used. Two H-FIRE electrodes were inserted into the liver (1.5-cm spacing). In the absence of paralytics H-FIRE pulses were delivered (2250V, 2-5-2 pulse configuration) at different on times (100 vs. 200μs) or number of pulses (100 vs. 300). Next electrodes were placed across major hepatic vascular structures and H-FIRE performed. At conclusion tissue was resected and analyzed histologically. Results: 24 H-FIREs were performed (mean ablation time 275 secs). No EKG abnormalities or changes in vital signs were measured during H-FIRE procedures. In 1/24 H-FIREs minor twitching of the rectus abdominis was recorded coinciding with pulse delivery. Histologically, tissues had effective electroporation as evidenced by cell death and caspase activity. Blinded scoring was performed for necrosis and apoptosis. Areas of cell death were predictable. No significant vascular damage or coagulated/thermally-desiccated blood was detected within major vessels following H-FIRE. Conclusions: H-FIRE is a novel way of liver electroporation. It produces predictable cell apoptosis without the requirement of paralytics and alteration of electrocardiographic signals as compared to traditional electroporation, while preserving underlying vascular integrity. Its application in cancer cell death needs to be further studied, but it has a potential for clinical use in targeting tumors with minimal morbidity and associated cardiac and neurologic side effects.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 723 ◽  
Author(s):  
Lingbing Peng ◽  
Tianfang Zhang ◽  
Yuhan Liu ◽  
Meihui Li ◽  
Zhenming Peng

A novel method based on multiscale and multidirectional feature fusion in the shearlet transform domain and kurtosis maximization for detecting the dim target in infrared images with a low signal-to-noise ratio (SNR) and serious interference caused by a cluttered and non-uniform background is presented in this paper. First, an original image is decomposed using the shearlet transform with translation invariance. Second, various directions of high-frequency subbands are fused and the corresponding kurtosis of fused image is computed. The targets can be enhanced by strengthening the column with maximum kurtosis. Then, processed high-frequency subbands on different scales of images are merged. Finally, the dim targets are detected by an adaptive threshold with a maximum contrast criterion (MCC). The experimental results show that the proposed method has good performance for infrared target detection in comparison with the nonsubsampled contourlet transform (NSCT) method.


2012 ◽  
Vol 108 (8) ◽  
pp. 2134-2143 ◽  
Author(s):  
Vitaliy Marchenko ◽  
Michael G. Z. Ghali ◽  
Robert F. Rogers

Fast oscillations are ubiquitous throughout the mammalian central nervous system and are especially prominent in respiratory motor outputs, including the phrenic nerves (PhNs). Some investigators have argued for an epiphenomenological basis for PhN high-frequency oscillations because phrenic motoneurons (PhMNs) firing at these same frequencies have never been recorded, although their existence has never been tested systematically. Experiments were performed on 18 paralyzed, unanesthetized, decerebrate adult rats in which whole PhN and individual PhMN activity were recorded. A novel method for evaluating unit-nerve time-frequency coherence was applied to PhMN and PhN recordings. PhMNs were classified according to their maximal firing rate as high, medium, and low frequency, corresponding to the analogous bands in PhN spectra. For the first time, we report the existence of PhMNs firing at rates corresponding to high-frequency oscillations during eupneic motor output. The majority of PhMNs fired only during inspiration, but a small subpopulation possessed tonic activity throughout all phases of respiration. Significant time-varying PhMN-PhN coherence was observed for all PhMN classes. High-frequency, early-recruited units had significantly more consistent onset times than low-frequency, early/middle-recruited and medium-frequency, middle/late-recruited PhMNs. High- and medium-frequency PhMNs had significantly more consistent offset times than low-frequency units. This suggests that startup and termination of PhMNs with higher firing rates are more precisely controlled, which may contribute to the greater PhMN-PhN coherence at the beginning and end of inspiration. Our findings provide evidence that near-synchronous discharge of PhMNs firing at high rates may underlie fast oscillations in PhN discharge.


Sign in / Sign up

Export Citation Format

Share Document