scholarly journals Motoneuron firing patterns underlying fast oscillations in phrenic nerve discharge in the rat

2012 ◽  
Vol 108 (8) ◽  
pp. 2134-2143 ◽  
Author(s):  
Vitaliy Marchenko ◽  
Michael G. Z. Ghali ◽  
Robert F. Rogers

Fast oscillations are ubiquitous throughout the mammalian central nervous system and are especially prominent in respiratory motor outputs, including the phrenic nerves (PhNs). Some investigators have argued for an epiphenomenological basis for PhN high-frequency oscillations because phrenic motoneurons (PhMNs) firing at these same frequencies have never been recorded, although their existence has never been tested systematically. Experiments were performed on 18 paralyzed, unanesthetized, decerebrate adult rats in which whole PhN and individual PhMN activity were recorded. A novel method for evaluating unit-nerve time-frequency coherence was applied to PhMN and PhN recordings. PhMNs were classified according to their maximal firing rate as high, medium, and low frequency, corresponding to the analogous bands in PhN spectra. For the first time, we report the existence of PhMNs firing at rates corresponding to high-frequency oscillations during eupneic motor output. The majority of PhMNs fired only during inspiration, but a small subpopulation possessed tonic activity throughout all phases of respiration. Significant time-varying PhMN-PhN coherence was observed for all PhMN classes. High-frequency, early-recruited units had significantly more consistent onset times than low-frequency, early/middle-recruited and medium-frequency, middle/late-recruited PhMNs. High- and medium-frequency PhMNs had significantly more consistent offset times than low-frequency units. This suggests that startup and termination of PhMNs with higher firing rates are more precisely controlled, which may contribute to the greater PhMN-PhN coherence at the beginning and end of inspiration. Our findings provide evidence that near-synchronous discharge of PhMNs firing at high rates may underlie fast oscillations in PhN discharge.

2006 ◽  
Vol 291 (5) ◽  
pp. R1414-R1429 ◽  
Author(s):  
Vitaliy Marchenko ◽  
Robert F. Rogers

Respiratory motor outputs contain medium-(MFO) and high-frequency oscillations (HFO) that are much faster than the fundamental breathing rhythm. However, the associated changes in power spectral characteristics of the major respiratory outputs in unanesthetized animals during the transition from normal eupneic breathing to hypoxic gasping have not been well characterized. Experiments were performed on nine unanesthetized, chemo- and barodenervated, decerebrate adult rats, in which asphyxia elicited hyperpnea, followed by apnea and gasping. A gated fast Fourier transform (FFT) analysis and a novel time-frequency representation (TFR) analysis were developed and applied to whole phrenic and to medial branch hypoglossal nerve recordings. Our results revealed one MFO and one HFO peak in the phrenic output during eupnea, where HFO was prominent in the first two-thirds of the burst and MFO was prominent in the latter two-thirds of the burst. The hypoglossal activity contained broadband power distribution with several distinct peaks. During gasping, two high-amplitude MFO peaks were present in phrenic activity, and this state was characterized by a conspicuous loss in HFO power. Hypoglossal activity showed a significant reduction in power and a shift in its distribution toward lower frequencies during gasping. TFR analysis of phrenic activity revealed the increasing importance of an initial low-frequency “start-up” burst that grew in relative intensity as hypoxic conditions persisted. Significant changes in MFO and HFO rhythm generation during the transition from eupnea to gasping presumably reflect a reconfiguration of the respiratory network and/or alterations in signal processing by the circuitry associated with the two motor pools.


2006 ◽  
Vol 291 (5) ◽  
pp. R1430-R1442 ◽  
Author(s):  
Vitaliy Marchenko ◽  
Robert F. Rogers

Fast respiratory rhythms include medium- (MFO) and high-frequency oscillations (HFO), which are much faster than the fundamental breathing rhythm. According to previous studies, HFO is characterized by high coherence (Coh) in phrenic (Ph) nerve activity, thereby providing a means of distinguishing between these two types of oscillations. Changes in Coh between the Ph and hypoglossal (XII) nerves during the transition from normal eupnic breathing to gasping have not been characterized. Experiments were performed on nine unanesthetized, chemo- and barodenervated, decerebrate adult rats, in which sustained asphyxia elicited hyperpnea and gasping. A gated time-frequency Coh analysis was developed and applied to whole Ph and medial XII nerve recordings. The results showed dynamic Ph-Ph Coh during eupnea, including MFO and HFO. XII-XII Coh during eupnea was broadband and included four distinct peaks, with low-frequency Coh dominating the epochs preceding the onset of Ph activity. During gasping, only MFO-peaks were present in Ph-Ph Coh. Bilateral XII activity showed a significant reduction in Coh and a shift toward lower frequencies during gasping. In contrast, contralateral Ph-XII Coh progressively increased during state changes from eupnea to gasping, a tendency mirrored in the startup part of the Ph activity. These data suggest significant hypoxia/hypercapnia-induced alterations in synchronization between respiratory outputs during the transition from eupnea to gasping, reflecting a reconfiguration of the respiratory network and/or alterations in the circuitry associated with the motor pools, including dynamic coupling between outputs.


2007 ◽  
Vol 293 (6) ◽  
pp. R2323-R2335 ◽  
Author(s):  
Vitaliy Marchenko ◽  
Robert F. Rogers

The aim of the present study was to determine characteristics of fast oscillations in the juvenile rat phrenic nerve (Ph) and to establish their temperature and state dependence. Two different age-matched decerebrate, baro- and chemodenervated rat preparations, in vivo and in situ arterially perfused models, were used to examine three systemic properties: 1) generation and dynamics of fast oscillations in Ph activity (both preparations), 2) responses to anoxia (both preparations), and 3) the effects of temperature on fast oscillations (in situ only). Both juvenile preparations generated power and coherence in two major bands analogous to adult medium- and high-frequency oscillations (HFO) at frequencies that increased with temperature but were lower than in adults. At < 28°C, however, Ph oscillations were confined primarily to one low-frequency band (20–45 Hz). During sustained anoxia, both preparations produced stereotypical state changes from eupnea to hyperpnea to transition bursting (a behavior present only in vivo during incomplete ischemia) to gasping. Thus the juvenile rat produces a sequential pattern of responses to anoxia that are intermediate forms between those produced by neonates and those produced by adults. Time-frequency analysis determined that fast oscillations demonstrated dynamics over the course of the inspiratory burst and a state dependence similar to that of adults in vivo in which hyperpnea (and transition) bursts are associated with increases in HFO, while gasping contains no HFO. Our results confirm that both the fast oscillations in Ph activity and the coherence between Ph pairs produced by the juvenile rat are profoundly state- and temperature-dependent.


1991 ◽  
Vol 81 (4) ◽  
pp. 1101-1114
Author(s):  
Jerry A. Carter ◽  
Noel Barstow ◽  
Paul W. Pomeroy ◽  
Eric P. Chael ◽  
Patrick J. Leahy

Abstract Evidence is presented supporting the view that high-frequency seismic noise decreases with increased depth. Noise amplitudes are higher near the free surface where surface-wave noise, cultural noise, and natural (wind-induced) noise predominate. Data were gathered at a hard-rock site in the northwestern Adirondack lowlands of northern New York. Between 15- and 40-Hz noise levels at this site are more than 10 dB less at 945-m depth than they are at the surface, and from 40 to 100 Hz the difference is more than 20 dB. In addition, time variability of the spectra is shown to be greater at the surface than at either 335- or 945-m depths. Part of the difference between the surface and subsurface noise variability may be related to wind-induced noise. Coherency measurements between orthogonal components of motion show high-frequency seismic noise is more highly organized at the surface than it is at depth. Coherency measurements between the same component of motion at different vertical offsets show a strong low-frequency coherence at least up to 945-m vertical offsets. As the vertical offset decreases, the frequency band of high coherence increases.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongju Chen ◽  
Shuai Zhou ◽  
Lihua Dong ◽  
Jinwei Fan

This paper presents a new identification method to identify the main errors of the machine tool in time-frequency domain. The low- and high-frequency signals of the workpiece surface are decomposed based on the Daubechies wavelet transform. With power spectral density analysis, the main features of the high-frequency signal corresponding to the imbalance of the spindle system are extracted from the surface topography of the workpiece in the frequency domain. With the cross-correlation analysis method, the relationship between the guideway error of the machine tool and the low-frequency signal of the surface topography is calculated in the time domain.


2021 ◽  
Vol 15 ◽  
Author(s):  
Katsuhiro Kobayashi ◽  
Takashi Shibata ◽  
Hiroki Tsuchiya ◽  
Tomoyuki Akiyama

AimRipple-band epileptic high-frequency oscillations (HFOs) can be recorded by scalp electroencephalography (EEG), and tend to be associated with epileptic spikes. However, there is a concern that the filtration of steep waveforms such as spikes may cause spurious oscillations or “false ripples.” We excluded such possibility from at least some ripples by EEG differentiation, which, in theory, enhances high-frequency signals and does not generate spurious oscillations or ringing.MethodsThe subjects were 50 pediatric patients, and ten consecutive spikes during sleep were selected for each patient. Five hundred spike data segments were initially reviewed by two experienced electroencephalographers using consensus to identify the presence or absence of ripples in the ordinary filtered EEG and an associated spectral blob in time-frequency analysis (Session A). These EEG data were subjected to numerical differentiation (the second derivative was denoted as EEG″). The EEG″ trace of each spike data segment was shown to two other electroencephalographers who judged independently whether there were clear ripple oscillations or uncertain ripple oscillations or an absence of oscillations (Session B).ResultsIn Session A, ripples were identified in 57 spike data segments (Group A-R), but not in the other 443 data segments (Group A-N). In Session B, both reviewers identified clear ripples (strict criterion) in 11 spike data segments, all of which were in Group A-R (p &lt; 0.0001 by Fisher’s exact test). When the extended criterion that included clear and/or uncertain ripples was used in Session B, both reviewers identified 25 spike data segments that fulfilled the criterion: 24 of these were in Group A-R (p &lt; 0.0001).DiscussionWe have demonstrated that real ripples over scalp spikes exist in a certain proportion of patients. Ripples that were visualized consistently using both ordinary filters and the EEG″ method should be true, but failure to clarify ripples using the EEG″ method does not mean that true ripples are absent.ConclusionThe numerical differentiation of EEG data provides convincing evidence that HFOs were detected in terms of the presence of such unusually fast oscillations over the scalp and the importance of this electrophysiological phenomenon.


2003 ◽  
Vol 6 (3) ◽  
pp. 213-225 ◽  
Author(s):  
MINNA LEHTONEN ◽  
MATTI LAINE

The present study investigated processing of morphologically complex words in three different frequency ranges in monolingual Finnish speakers and Finnish-Swedish bilinguals. By employing a visual lexical decision task, we found a differential pattern of results in monolinguals vs. bilinguals. Monolingual Finns seemed to process low frequency and medium frequency inflected Finnish nouns mostly by morpheme-based recognition but high frequency inflected nouns through full-form representations. In contrast, bilinguals demonstrated a processing delay for all inflections throughout the whole frequency range, suggesting decomposition for all inflected targets. This may reflect different amounts of exposure to the word forms in the two groups. Inflected word forms that are encountered very frequently will acquire full-form representations, which saves processing time. However, with the lower rates of exposure, which characterize bilingual individuals, full-form representations do not start to develop.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Smruti R. Panigrahi ◽  
Brian F. Feeny ◽  
Alejandro R. Diaz

This work regards the use of cubic springs with intervals of negative stiffness, in other words, “snap-through” elements, in order to convert low-frequency ambient vibrations into high-frequency oscillations, referred to as “twinkling.” The focus of this paper is on the bifurcation of a two-mass chain that, in the symmetric system, involves infinitely many equilibria at the bifurcation point. The structure of this “eclipse bifurcation” is uncovered, and perturbations of the bifurcation are studied. The energies associated with the equilibria are examined.


2016 ◽  
Vol 113 (33) ◽  
pp. 9363-9368 ◽  
Author(s):  
Michel Le Van Quyen ◽  
Lyle E. Muller ◽  
Bartosz Telenczuk ◽  
Eric Halgren ◽  
Sydney Cash ◽  
...  

Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake–sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS.


2018 ◽  
Vol 18 (2) ◽  
pp. 171-184
Author(s):  
Aviral Kumar Tiwari ◽  
Olaolu Richard Olayeni ◽  
Reza Sherafatian-Jahromi ◽  
Olofin Sodik Adejonwo

This article investigated the relationship between output, money and interest rate, using wavelet tools for the period 1972–2017. Application of such tools is helpful in answering particularly two questions: first, what the strength and direction of the causal relationships between money, output and interest rate is, and second, whether the relationship is cyclical or anti-cyclical in nature. Findings from this article show that output and money are highly coherent in low, middle and high frequencies, and coherence increases while controlling for interest rate, with money growth as the leading variable most of the time across frequencies. Output and interest rate are equally highly coherent, mostly at high frequency and some bits of middle frequency; coherence increases with the control for money, and interest rate often times leads the relationship. Also, money and interest rate are coherent at low, middle and high frequencies with interest rate leading the relationship, and controlling the effect of output increases the coherence at some times and decreases at other times. There are observable evidences of both cyclical and anti-cyclical relationships among the variables. Policy decisions should be cautious of shortrun moves in order not to trigger undesired long-run outcomes since no difference is observed in the direction of causation over time–frequency. JEL: C49, E43, E52


Sign in / Sign up

Export Citation Format

Share Document