2021 ◽  
Vol 320 ◽  
pp. 04009
Author(s):  
M. Mukhammadiyev ◽  
B. Urishev ◽  
E. Kan ◽  
K. Juraev

The structure of hydraulic structures of power and water management systems includes gates for various purposes, which allow you to regulate and distribute the flow of water in channels and waterworks. Existing gate designs do not provide for the possibility of generating electricity from the water energy of the stream passing through them. In order to convert the hydraulic energy of water passing through the gates into electrical energy a new patented design of the gate is proposed which allows using micro-hydroelectric power plants with a Banki turbine to make more rational use of the hydro resources of energy and water management systems. The proposed design solves the problem of expanding the functionality of the gate and increasing the efficiency of micro-hydroelectric power plants with a reduction in its cost. Areas of application of the new design for the combined use of micro-hydroelectric power plants and hydraulic gates at hydroelectric power systems are also proposed. The technique for determining the technical and economic parameters of micro-hydroelectric power plants installed on flat gates of hydraulic structures is given, and theoretical calculations are performed, which showed that the higher the capacity of micro-hydroelectric power plants, the shorter its payback period.


1997 ◽  
Vol 12 (3) ◽  
pp. 1220-1228 ◽  
Author(s):  
S. Soares ◽  
C.T. Salmazo

2020 ◽  
Vol 209 ◽  
pp. 07014
Author(s):  
Tulkin Gayibov ◽  
Bekzod Pulatov

Optimal planning of short-term modes of power systems is a complex nonlinear programming problem with many simple, functional and integral constraints in the form of equalities and inequalities. Especially, the presence of integral constraints causes significant difficulties in solving of such problem. Since, under such constraints, the modes of power system in separate time intervals of the considered planning period become dependent on the values of the parameters in other intervals. Accordingly, it becomes impossible to obtain the optimal mode plan as the results of separate optimization for individual time intervals of the period under consideration. And the simultaneous solution of the problem for all time intervals of the planning period in the conditions of large power systems is associated with additional difficulties in ensuring the reliability of convergence of the iterative computational process. In this regard, the issues of improving the methods and algorithms for optimization of short-term modes of power systems containing thermal and large hydroelectric power plants with reservoirs, in which water consumption is regulated in the short-term planning period, remains as an important task. In this paper, we propose the effective algorithm for solving the problem under consideration, which makes it possible to quickly and reliably determine the optimal operating modes of the power system for the planned period. The results of research of effectiveness of this algorithm are presented on the example of optimal planning of daily mode of the power system, which contains two thermal and three hydraulic power plants..


Sign in / Sign up

Export Citation Format

Share Document