Smart-pixel with SPAD detector and time-to-digital converter for time-correlated single photon counting

Author(s):  
Bojan Markovic ◽  
Alberto Tosi ◽  
Franco Zappa ◽  
Simone Tisa
2012 ◽  
Vol 4 (3) ◽  
pp. 795-804 ◽  
Author(s):  
F. Villa ◽  
B. Markovic ◽  
S. Bellisai ◽  
D. Bronzi ◽  
A. Tosi ◽  
...  

2021 ◽  
Vol 16 (12) ◽  
pp. C12010
Author(s):  
L.A. Kadlubowski ◽  
P. Kmon

Abstract The paper describes a design of a prototype chip in 28 nm CMOS technology, consisting of 8 × 4 pixels with 50 μm pitch, dedicated for the precise measurement of Time-of-Arrival (ToA) and Time-over-Threshold (ToT) with a resolution within the picosecond range. To address this requirement, in-pixel Vernier time-to-digital converter (TDC) has been implemented, which utilizes two ring oscillators per pixel. Overall chip architecture is introduced as well as pixel architecture and selected simulation results. The pixel consists of a recording channel and TDC part. The recording channel is composed of an inverter-based front-end amplifier with Zimmerman feedback, a discriminator, a calibration block and a threshold setting block. TDC part includes two ring oscillators together with their calibration blocks and additional logic with counters/shift registers that allow for precise ToA measurement (using Vernier method) as well as ToT measurement (using one of the oscillators). Alternatively, single photon counting (SPC) mode can be used. Frequency of oscillators is set in three steps. First, two global 8-bit digital-to-analog converters (DACs) are used for initial setting of all ring oscillators. Then, per-oscillator capacitance bank and 6-bit DAC are used for fine setting. Simulation results of core blocks suggest that the ToA resolution on the order of tens of picoseconds may be achieved. The chips are already fabricated and are currently being prepared for measurements.


Author(s):  
Mike Bruce ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
David Bethke ◽  
J.M. Chin

Abstract For time resolved hot carrier emission from the backside, an alternate approach is demonstrated termed single point PICA. The single point approach records time resolved emission from an individual transistor using time-correlated-single-photon counting and an avalanche photo-diode. The avalanche photo-diode has a much higher quantum efficiency than micro-channel plate photo-multiplier tube based imaging cameras typically used in earlier approaches. The basic system is described and demonstrated from the backside on a ring oscillator circuit.


Author(s):  
Maria Concetta Maccarone ◽  
Giovanni La Rosa ◽  
Osvaldo Catalano ◽  
Salvo Giarrusso ◽  
Alberto Segreto ◽  
...  

AbstractUVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measure light flux in the wavelengths range 300-650 nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.


Sign in / Sign up

Export Citation Format

Share Document