Research on Hyperspectral Image Target Detection By the Convergence Neural Network Based on Transfer Learning

Author(s):  
Liang Bao ◽  
Yaoqin Zhu
2020 ◽  
Vol 12 (16) ◽  
pp. 2653 ◽  
Author(s):  
Wojciech Masarczyk ◽  
Przemysław Głomb ◽  
Bartosz Grabowski ◽  
Mateusz Ostaszewski

Hyperspectral imaging is a rich source of data, allowing for a multitude of effective applications. However, such imaging remains challenging because of large data dimension and, typically, a small pool of available training examples. While deep learning approaches have been shown to be successful in providing effective classification solutions, especially for high dimensional problems, unfortunately they work best with a lot of labelled examples available. The transfer learning approach can be used to alleviate the second requirement for a particular dataset: first the network is pre-trained on some dataset with large amount of training labels available, then the actual dataset is used to fine-tune the network. This strategy is not straightforward to apply with hyperspectral images, as it is often the case that only one particular image of some type or characteristic is available. In this paper, we propose and investigate a simple and effective strategy of transfer learning that uses unsupervised pre-training step without label information. This approach can be applied to many of the hyperspectral classification problems. The performed experiments show that it is very effective at improving the classification accuracy without being restricted to a particular image type or neural network architecture. The experiments were carried out on several deep neural network architectures and various sizes of labeled training sets. The greatest improvement in overall accuracy on the Indian Pines and Pavia University datasets is over 21 and 13 percentage points, respectively. An additional advantage of the proposed approach is the unsupervised nature of the pre-training step, which can be done immediately after image acquisition, without the need of the potentially costly expert’s time.


2020 ◽  
Vol 12 (11) ◽  
pp. 1780 ◽  
Author(s):  
Yao Liu ◽  
Lianru Gao ◽  
Chenchao Xiao ◽  
Ying Qu ◽  
Ke Zheng ◽  
...  

Convolutional neural networks (CNNs) have been widely applied in hyperspectral imagery (HSI) classification. However, their classification performance might be limited by the scarcity of labeled data to be used for training and validation. In this paper, we propose a novel lightweight shuffled group convolutional neural network (abbreviated as SG-CNN) to achieve efficient training with a limited training dataset in HSI classification. SG-CNN consists of SG conv units that employ conventional and atrous convolution in different groups, followed by channel shuffle operation and shortcut connection. In this way, SG-CNNs have less trainable parameters, whilst they can still be accurately and efficiently trained with fewer labeled samples. Transfer learning between different HSI datasets is also applied on the SG-CNN to further improve the classification accuracy. To evaluate the effectiveness of SG-CNNs for HSI classification, experiments have been conducted on three public HSI datasets pretrained on HSIs from different sensors. SG-CNNs with different levels of complexity were tested, and their classification results were compared with fine-tuned ShuffleNet2, ResNeXt, and their original counterparts. The experimental results demonstrate that SG-CNNs can achieve competitive classification performance when the amount of labeled data for training is poor, as well as efficiently providing satisfying classification results.


2021 ◽  
Vol 13 (5) ◽  
pp. 930
Author(s):  
Fuding Xie ◽  
Quanshan Gao ◽  
Cui Jin ◽  
Fengxia Zhao

Deep learning-based hyperspectral image (HSI) classification has attracted more and more attention because of its excellent classification ability. Generally, the outstanding performance of these methods mainly depends on a large number of labeled samples. Therefore, it still remains an ongoing challenge how to integrate spatial structure information into these frameworks to classify the HSI with limited training samples. In this study, an effective spectral-spatial HSI classification scheme is proposed based on superpixel pooling convolutional neural network with transfer learning (SP-CNN). The suggested method includes three stages. The first part consists of convolution and pooling operation, which is a down-sampling process to extract the main spectral features of an HSI. The second part is composed of up-sampling and superpixel (homogeneous regions with adaptive shape and size) pooling to explore the spatial structure information of an HSI. Finally, the hyperspectral data with each superpixel as a basic input rather than a pixel are fed to fully connected neural network. In this method, the spectral and spatial information is effectively fused by using superpixel pooling technique. The use of popular transfer learning technology in the proposed classification framework significantly improves the training efficiency of SP-CNN. To evaluate the effectiveness of the SP-CNN, extensive experiments were conducted on three common real HSI datasets acquired from different sensors. With 30 labeled pixels per class, the overall classification accuracy provided by this method on three benchmarks all exceeded 93%, which was at least 4.55% higher than that of several state-of-the-art approaches. Experimental and comparative results prove that the proposed algorithm can effectively classify the HSI with limited training labels.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Douglas Omwenga Nyabuga ◽  
Jinling Song ◽  
Guohua Liu ◽  
Michael Adjeisah

As one of the fast evolution of remote sensing and spectral imagery techniques, hyperspectral image (HSI) classification has attracted considerable attention in various fields, including land survey, resource monitoring, and among others. Nonetheless, due to a lack of distinctiveness in the hyperspectral pixels of separate classes, there is a recurrent inseparability obstacle in the primary space. Additionally, an open challenge stems from examining efficient techniques that can speedily classify and interpret the spectral-spatial data bands within a more precise computational time. Hence, in this work, we propose a 3D-2D convolutional neural network and transfer learning model where the early layers of the model exploit 3D convolutions to modeling spectral-spatial information. On top of it are 2D convolutional layers to handle semantic abstraction mainly. Toward simplicity and a highly modularized network for image classification, we leverage the ResNeXt-50 block for our model. Furthermore, improving the separability among classes and balance of the interclass and intraclass criteria, we engaged principal component analysis (PCA) for the best orthogonal vectors for representing information from HSIs before feeding to the network. The experimental result shows that our model can efficiently improve the hyperspectral imagery classification, including an instantaneous representation of the spectral-spatial information. Our model evaluation on five publicly available hyperspectral datasets, Indian Pines (IP), Pavia University Scene (PU), Salinas Scene (SA), Botswana (BS), and Kennedy Space Center (KSC), was performed with a high classification accuracy of 99.85%, 99.98%, 100%, 99.82%, and 99.71%, respectively. Quantitative results demonstrated that it outperformed several state-of-the-arts (SOTA), deep neural network-based approaches, and standard classifiers. Thus, it has provided more insight into hyperspectral image classification.


Sign in / Sign up

Export Citation Format

Share Document