scholarly journals Hyperspectral Image Classification Based on Superpixel Pooling Convolutional Neural Network with Transfer Learning

2021 ◽  
Vol 13 (5) ◽  
pp. 930
Author(s):  
Fuding Xie ◽  
Quanshan Gao ◽  
Cui Jin ◽  
Fengxia Zhao

Deep learning-based hyperspectral image (HSI) classification has attracted more and more attention because of its excellent classification ability. Generally, the outstanding performance of these methods mainly depends on a large number of labeled samples. Therefore, it still remains an ongoing challenge how to integrate spatial structure information into these frameworks to classify the HSI with limited training samples. In this study, an effective spectral-spatial HSI classification scheme is proposed based on superpixel pooling convolutional neural network with transfer learning (SP-CNN). The suggested method includes three stages. The first part consists of convolution and pooling operation, which is a down-sampling process to extract the main spectral features of an HSI. The second part is composed of up-sampling and superpixel (homogeneous regions with adaptive shape and size) pooling to explore the spatial structure information of an HSI. Finally, the hyperspectral data with each superpixel as a basic input rather than a pixel are fed to fully connected neural network. In this method, the spectral and spatial information is effectively fused by using superpixel pooling technique. The use of popular transfer learning technology in the proposed classification framework significantly improves the training efficiency of SP-CNN. To evaluate the effectiveness of the SP-CNN, extensive experiments were conducted on three common real HSI datasets acquired from different sensors. With 30 labeled pixels per class, the overall classification accuracy provided by this method on three benchmarks all exceeded 93%, which was at least 4.55% higher than that of several state-of-the-art approaches. Experimental and comparative results prove that the proposed algorithm can effectively classify the HSI with limited training labels.

2021 ◽  
Vol 13 (7) ◽  
pp. 1248
Author(s):  
Hao Xu ◽  
Wei Yao ◽  
Li Cheng ◽  
Bo Li

In recent years, benefiting from the rapid development of deep learning technology in the field of computer vision, the study of hyperspectral image (HSI) classification has also made great progress. However, compared with ordinary RGB images, HSIs are more like 3D cubes; therefore, it is necessary and beneficial to explore classification methods suitable for the very special data structure of HSIs. In this paper, we propose Multiple Spectral Resolution 3D Convolutional Neural Network (MSR-3DCNN) for HSI classification tasks. In MSR-3DCNN, we expand the idea of multi-scale feature fusion and dilated convolution from the spatial dimension to the spectral dimension, and combine 3D convolution and residual connection; therefore, it can better adapt to the 3D cubic form of hyperspectral data and make efficient use of spectral information in different bands. Experimental results on four benchmark datasets show the effectiveness of the proposed approach and its superiority as compared with some state-of-the-art (SOTA) HSI classification methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Douglas Omwenga Nyabuga ◽  
Jinling Song ◽  
Guohua Liu ◽  
Michael Adjeisah

As one of the fast evolution of remote sensing and spectral imagery techniques, hyperspectral image (HSI) classification has attracted considerable attention in various fields, including land survey, resource monitoring, and among others. Nonetheless, due to a lack of distinctiveness in the hyperspectral pixels of separate classes, there is a recurrent inseparability obstacle in the primary space. Additionally, an open challenge stems from examining efficient techniques that can speedily classify and interpret the spectral-spatial data bands within a more precise computational time. Hence, in this work, we propose a 3D-2D convolutional neural network and transfer learning model where the early layers of the model exploit 3D convolutions to modeling spectral-spatial information. On top of it are 2D convolutional layers to handle semantic abstraction mainly. Toward simplicity and a highly modularized network for image classification, we leverage the ResNeXt-50 block for our model. Furthermore, improving the separability among classes and balance of the interclass and intraclass criteria, we engaged principal component analysis (PCA) for the best orthogonal vectors for representing information from HSIs before feeding to the network. The experimental result shows that our model can efficiently improve the hyperspectral imagery classification, including an instantaneous representation of the spectral-spatial information. Our model evaluation on five publicly available hyperspectral datasets, Indian Pines (IP), Pavia University Scene (PU), Salinas Scene (SA), Botswana (BS), and Kennedy Space Center (KSC), was performed with a high classification accuracy of 99.85%, 99.98%, 100%, 99.82%, and 99.71%, respectively. Quantitative results demonstrated that it outperformed several state-of-the-arts (SOTA), deep neural network-based approaches, and standard classifiers. Thus, it has provided more insight into hyperspectral image classification.


Author(s):  
N. Li ◽  
C. Wang ◽  
H. Zhao ◽  
X. Gong ◽  
D. Wang

Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.


2020 ◽  
Vol 12 (12) ◽  
pp. 2033 ◽  
Author(s):  
Xiaofei Yang ◽  
Xiaofeng Zhang ◽  
Yunming Ye ◽  
Raymond Y. K. Lau ◽  
Shijian Lu ◽  
...  

Accurate hyperspectral image classification has been an important yet challenging task for years. With the recent success of deep learning in various tasks, 2-dimensional (2D)/3-dimensional (3D) convolutional neural networks (CNNs) have been exploited to capture spectral or spatial information in hyperspectral images. On the other hand, few approaches make use of both spectral and spatial information simultaneously, which is critical to accurate hyperspectral image classification. This paper presents a novel Synergistic Convolutional Neural Network (SyCNN) for accurate hyperspectral image classification. The SyCNN consists of a hybrid module that combines 2D and 3D CNNs in feature learning and a data interaction module that fuses spectral and spatial hyperspectral information. Additionally, it introduces a 3D attention mechanism before the fully-connected layer which helps filter out interfering features and information effectively. Extensive experiments over three public benchmarking datasets show that our proposed SyCNNs clearly outperform state-of-the-art techniques that use 2D/3D CNNs.


2019 ◽  
Vol 11 (23) ◽  
pp. 2859 ◽  
Author(s):  
Jiaojiao Li ◽  
Ruxing Cui ◽  
Bo Li ◽  
Rui Song ◽  
Yunsong Li ◽  
...  

Hyperspectral image (HSI) super-resolution (SR) is of great application value and has attracted broad attention. The hyperspectral single image super-resolution (HSISR) task is correspondingly difficult in SR due to the unavailability of auxiliary high resolution images. To tackle this challenging task, different from the existing learning-based HSISR algorithms, in this paper we propose a novel framework, i.e., a 1D–2D attentional convolutional neural network, which employs a separation strategy to extract the spatial–spectral information and then fuse them gradually. More specifically, our network consists of two streams: a spatial one and a spectral one. The spectral one is mainly composed of the 1D convolution to encode a small change in the spectrum, while the 2D convolution, cooperating with the attention mechanism, is used in the spatial pathway to encode spatial information. Furthermore, a novel hierarchical side connection strategy is proposed for effectively fusing spectral and spatial information. Compared with the typical 3D convolutional neural network (CNN), the 1D–2D CNN is easier to train with less parameters. More importantly, our proposed framework can not only present a perfect solution for the HSISR problem, but also explore the potential in hyperspectral pansharpening. The experiments over widely used benchmarks on SISR and hyperspectral pansharpening demonstrate that the proposed method could outperform other state-of-the-art methods, both in visual quality and quantity measurements.


2020 ◽  
Vol 12 (11) ◽  
pp. 1780 ◽  
Author(s):  
Yao Liu ◽  
Lianru Gao ◽  
Chenchao Xiao ◽  
Ying Qu ◽  
Ke Zheng ◽  
...  

Convolutional neural networks (CNNs) have been widely applied in hyperspectral imagery (HSI) classification. However, their classification performance might be limited by the scarcity of labeled data to be used for training and validation. In this paper, we propose a novel lightweight shuffled group convolutional neural network (abbreviated as SG-CNN) to achieve efficient training with a limited training dataset in HSI classification. SG-CNN consists of SG conv units that employ conventional and atrous convolution in different groups, followed by channel shuffle operation and shortcut connection. In this way, SG-CNNs have less trainable parameters, whilst they can still be accurately and efficiently trained with fewer labeled samples. Transfer learning between different HSI datasets is also applied on the SG-CNN to further improve the classification accuracy. To evaluate the effectiveness of SG-CNNs for HSI classification, experiments have been conducted on three public HSI datasets pretrained on HSIs from different sensors. SG-CNNs with different levels of complexity were tested, and their classification results were compared with fine-tuned ShuffleNet2, ResNeXt, and their original counterparts. The experimental results demonstrate that SG-CNNs can achieve competitive classification performance when the amount of labeled data for training is poor, as well as efficiently providing satisfying classification results.


Sign in / Sign up

Export Citation Format

Share Document