Deep Learning for Ultra-Wideband Indoor Positioning

Author(s):  
Yi-Min Lu ◽  
Jang-Ping Sheu ◽  
Yung-Ching Kuo
Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 346
Author(s):  
Zhenjie Ma ◽  
Wenjun Zhang ◽  
Ke Shi

As a result of the development of wireless indoor positioning techniques such as WiFi, Bluetooth, and Ultra-wideband (UWB), the positioning traces of moving people or objects in indoor environments can be tracked and recorded, and the distances moved can be estimated from these data traces. These estimates are very useful in many applications such as workload statistics and optimized job allocation in the field of logistics. However, due to the uncertainties of the wireless signal and corresponding positioning errors, accurately estimating movement distance still faces challenges. To address this issue, this paper proposes a movement status recognition-based distance estimating method to improve the accuracy. We divide the positioning traces into segments and use an encoder–decoder deep learning-based model to determine the motion status of each segment. Then, the distances of these segments are calculated by different distance estimating methods based on their movement statuses. The experiments on the real positioning traces demonstrate the proposed method can precisely identify the movement status and significantly improve the distance estimating accuracy.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Alwin Poulose ◽  
Dong Seog Han

Positioning using Wi-Fi received signal strength indication (RSSI) signals is an effective method for identifying the user positions in an indoor scenario. Wi-Fi RSSI signals in an autonomous system can be easily used for vehicle tracking in underground parking. In Wi-Fi RSSI signal based positioning, the positioning system estimates the signal strength of the access points (APs) to the receiver and identifies the user’s indoor positions. The existing Wi-Fi RSSI based positioning systems use raw RSSI signals obtained from APs and estimate the user positions. These raw RSSI signals can easily fluctuate and be interfered with by the indoor channel conditions. This signal interference in the indoor channel condition reduces localization performance of these existing Wi-Fi RSSI signal based positioning systems. To enhance their performance and reduce the positioning error, we propose a hybrid deep learning model (HDLM) based indoor positioning system. The proposed HDLM based positioning system uses RSSI heat maps instead of raw RSSI signals from APs. This results in better localization performance for Wi-Fi RSSI signal based positioning systems. When compared to the existing Wi-Fi RSSI based positioning technologies such as fingerprint, trilateration, and Wi-Fi fusion approaches, the proposed approach achieves reasonably better positioning results for indoor localization. The experiment results show that a combination of convolutional neural network and long short-term memory network (CNN-LSTM) used in the proposed HDLM outperforms other deep learning models and gives a smaller localization error than conventional Wi-Fi RSSI signal based localization approaches. From the experiment result analysis, the proposed system can be easily implemented for autonomous applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Santosh Subedi ◽  
Jae-Young Pyun

Recent developments in the fields of smartphones and wireless communication technologies such as beacons, Wi-Fi, and ultra-wideband have made it possible to realize indoor positioning system (IPS) with a few meters of accuracy. In this paper, an improvement over traditional fingerprinting localization is proposed by combining it with weighted centroid localization (WCL). The proposed localization method reduces the total number of fingerprint reference points over the localization space, thus minimizing both the time required for reading radio frequency signals and the number of reference points needed during the fingerprinting learning process, which eventually makes the process less time-consuming. The proposed positioning has two major steps of operation. In the first step, we have realized fingerprinting that utilizes lightly populated reference points (RPs) and WCL individually. Using the location estimated at the first step, WCL is run again for the final location estimation. The proposed localization technique reduces the number of required fingerprint RPs by more than 40% compared to normal fingerprinting localization method with a similar localization estimation error.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 145784-145797 ◽  
Author(s):  
Erick Schmidt ◽  
Devasena Inupakutika ◽  
Rahul Mundlamuri ◽  
David Akopian

Sign in / Sign up

Export Citation Format

Share Document