Effect of high power lower hybrid wave on ion temperature gradient driven drift wave in Tokamak

Author(s):  
Animesh Kuley ◽  
V. K. Tripathi
2009 ◽  
Vol 76 (2) ◽  
pp. 229-237 ◽  
Author(s):  
X. M. ZHANG ◽  
X. SHEN ◽  
B. N. WAN ◽  
Z. W. WU ◽  
J. FU ◽  
...  

AbstractIn the HT-7 tokamak, heat transport analysis is carried out for the lower hybrid current drive (LHCD) experiments. Electrons and ions are coupled and good confinement can be obtained by properly optimizating LHCD and plasma parameters. Under the conditions that the plasma current is about 220 kA, the lower hybrid wave (LHW) power is about 300 kW and the central line-averaged density is about 1.5×1013 cm−3, lower hybrid wave power deposition is off-axis. Local transport analysis illustrated that both electron and ion thermal diffusivities are decreased during the LHW phase, and the electron internal transport barriers (eITBs) are formed while been accompanied by the ion internal transport barriers (iITBs) during LHW phase. Ions are heated by electron-ion collision in the region of the barriers although the ohmic power and the LHW power were absorbed by the electrons. Both electron temperature and ion temperature are increased during the LHW phase, and in the confinement region, the electron-to-ion temperature ratio, Te/Ti varies from 2.0 ~ 2.5 during OH phase to 1.3 ~ 1.6 during LHW injected into the plasma, which shows that electron confinement is not degraded by the electron–ion collisions meanwhile ions are also confined. The energy confinement is increased from 13 ms to 25 ms due to the formation of electron and ion internal transport barries after the LHW is injected into the plasma. LHW driven current and bootstrap current contribute to 60% of the total current.


1981 ◽  
Vol 25 (1) ◽  
pp. 145-159 ◽  
Author(s):  
S. Peter Gary ◽  
Barbara Abraham-Shrauner

This paper considers temperature drift instabilities, modes which can be driven unstable solely by a temperature gradient perpendicular to a magnetic field. The linear electrostatic dispersion relation for a Vlasov plasma in a uniform magnetic field is used and propagation is assumed to be in the plane perpendicular to the gradient. Three temperature drift instabilities have been found. The ion temperature drift instability arises at frequencies much below the ion cyclotron frequency, the electron temperature drift instability propagates somewhat below that frequency and the lower-hybrid temperature drift instability has frequencies above the lower-hybrid frequency. The first of these modes is driven by an ion temperature gradient and is enhanced by increasing Te/Ti. The latter two modes are driven by an electron temperature gradient and are enhanced by a decreasing Te/Ti. Density gradients are considered as an additional source of free energy, and comparisons of temperature drift with density drift instabilities are made.


2013 ◽  
Vol 79 (5) ◽  
pp. 837-846 ◽  
Author(s):  
X. R. FU ◽  
W. HORTON ◽  
I. O. BESPAMYATNOV ◽  
W. L. ROWAN ◽  
S. BENKADDA ◽  
...  

AbstractTurbulent particle transport is investigated with a quasilinear theory that is motivated by the boron impurity transport experiments in the Alcator C-Mod. Eigenvalue problems for sets of reduced fluid equations for multi-component plasmas are solved for the self-consistent fluctuating field vectors composed of the electric potential φ, the main ion density δni, the impurity density δnz and the ion temperature fluctuation δTi. For Alcator C-Mod parameters, we investigate two drift wave models: (1) the density-gradient-driven impurity drift wave and (2) the ion-temperature-gradient-driven ion temperature gradient (ITG) mode. Analytic and numerical results for particle transport coefficients are derived and compared with the transport data and the neoclassical theory. We explore the ability of the model to explain impurity density profiles in three confinement regimes: H-mode, I-mode and internal transport barrier (ITB) regime in C-Mod. Related experiments reported on the Large Helical Device are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document