temperature drift
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 105)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Vol 355 ◽  
pp. 02056
Author(s):  
Yajun Ma ◽  
Wei Xiong ◽  
Zhen Wang ◽  
Wenzhang Li ◽  
Jiajia Xu

The converter is a measuring device and is used together with the displacement sensor. In view of the existing sensor transform device is susceptible to error and temperature drift effects acquisition accuracy is not high, we design a high precision transducer, multi-sensor information fusion for vehicle steering gear shaft angular displacement signal measurement, signal transformation and digital transmission. The converter has the characteristics of high precision, miniaturization and low cost. Multi-sensor information fusion high-precision converter adopts front-end signal amplifier circuit, following filter processing circuit and embedded software of microprocessor for online compensation to satisfy the requirements of high-precision transformation. The microcontroller is used as the main control chip to meet the requirements of 8-channel bipolar analog signal acquisition. Two 14-bit, 6-channel A/D chips are used to convert the bipolar analog signal in the range of ±10V, and the RS422 hardware interface circuit performs digital transmission according to the time sequence specified by the central programmer. The experimental results show that the conversion accuracy of the device can reach 0.06%, the digital signal transmission is stable, and it can be widely used in industrial production.


2021 ◽  
Vol 7 (4) ◽  
pp. 99-103
Author(s):  
Sergey Lesovoi ◽  
Mariia Globa

To achieve the maximum dynamic range of solar radio images obtained using aperture synthesis in relatively wide frequency bands 0.1−0.5 % of the operating frequency, it is necessary to compensate the signal propagation delays in the antenna receive path before calculating visibility functions (hereinafter visibilities). When visibilities are corrected without delay compensation, the signal-to-noise ratio decreases due to residual phase slopes in the receiving system bandwidth. In addition to enhancing dynamic range, preliminary compensation for delays simplifies real-time imaging — no antenna gain calibration is required to get a first approximation image. The requirements for the accuracy of antenna placement are also reduced — in contrast to the measurement of the phase visibility error, the measurement of the delay is actually not so critical to the antenna position errors that are larger than the operating wavelength. The instantaneous frequency band of the Siberian Radioheliograph, which determines the minimum step for measuring the phase slope, and hence the accuracy of determining the delay, is 10 MHz. At the speed of light in an optical fiber of ~0.7c, a step of 10 MHz makes it possible to unambiguously measure the difference between electrical lengths of cables up to 20 m and to correct antenna positions by radio observations, even if the error in the position of the antennas exceeds the operating wavelength. Correction of the band phase slopes during the observation time adapts the radio telescope to the temperature drift of delays and decreases antenna gain phase spread. This, in turn, leads to more stable solutions to systems of equations containing antenna gains as unknowns.


2021 ◽  
Vol 7 (4) ◽  
pp. 93-97
Author(s):  
Sergey Lesovoi ◽  
Mariia Globa

To achieve the maximum dynamic range of solar radio images obtained using aperture synthesis in relatively wide frequency bands 0.1−0.5 % of the operating frequency, it is necessary to compensate the signal propagation delays in the antenna receive path before calculating visibility functions (hereinafter visibilities). When visibilities are corrected without delay compensation, the signal-to-noise ratio decreases due to residual phase slopes in the receiving system bandwidth. In addition to enhancing dynamic range, preliminary compensation for delays simplifies real-time imaging — no antenna gain calibration is required to get a first approximation image. The requirements for the accuracy of antenna placement are also reduced — in contrast to the measurement of the phase visibility error, the measurement of the delay is actually not so critical to the antenna position errors that are larger than the operating wavelength. The instantaneous frequency band of the Siberian Radioheliograph, which determines the minimum step for measuring the phase slope, and hence the accuracy of determining the delay, is 10 MHz. At the speed of light in an optical fiber of ~0.7c, a step of 10 MHz makes it possible to unambiguously measure the difference between electrical lengths of cables up to 20 m and to correct antenna positions by radio observations, even if the error in the position of the antennas exceeds the operating wavelength. Correction of the band phase slopes during the observation time adapts the radio telescope to the temperature drift of delays and decreases antenna gain phase spread. This, in turn, leads to more stable solutions to systems of equations containing antenna gains as unknowns.


Author(s):  
Zhongda Huang ◽  
Yihang Tong ◽  
Jake Bobowski

Abstract We describe a simple AC susceptometer built in-house that can be used to make high-resolution measurements of the magnetic susceptibility of high-temperature superconductors in an undergraduate physics lab. Our system, cooled using liquid nitrogen, can reach a base temperature of 77 K. Our apparatus does not require gas handling systems or PID temperature controllers. Instead, it makes use of a thermal circuit that is designed to allow the sample to cool on a time scale that is suitable for an undergraduate lab. Furthermore, the temperature drift rate at the superconducting transition temperature T c is low enough to allow for precise measurements of the complex magnetic susceptibility through T c, even for single-crystal samples with exceedingly sharp superconducting transitions. Using an electromagnet, we were able to apply static magnetic fields up to 63 mT at the sample site. By measuring the change in susceptibility as a function of the strength of an applied of static magnetic field, we were able to estimate the lower critical field H c1 of a single-crystal sample of optimally-doped YBa2Cu3O6.95 at 77 K. We also investigated the mixed state of a sintered polycrystalline sample of YBa2Cu3O6+y .


2021 ◽  
Vol 18 (23) ◽  
pp. 721
Author(s):  
Suvajit Roy ◽  
Tapas Kumar Paul ◽  
Radha Raman Pal

This work provides new designs of simple current-mode squaring and square-rooting circuits using multiple-output current controlled current conveyor transconductance amplifier (MO-CCCCTA) as an active building block. Since the proposed circuits need no other external components, they are capable of high-frequency operation and well fitted for IC fabrication. Furthermore, they are insensitive to ambient temperature and their gains can be controlled easily by adjusting the bias currents of MO-CCCCTA. Additionally, the effects of MO-CCCCTA non-idealities on the designed circuits have also been investigated and discussed. Simulation results generated through PSPICE software using TSMC 0.18 µm CMOS process parameters have been presented to justify the theoretical analysis. The static power consumption, bandwidth, and maximum linearity error in dc transfer characteristic measurement for the square-rooting circuit are found to be 0.17 mW, 445.63 MHz and 1.12 %, while for the squaring circuit they are 0.326 mW, 61.15 MHz and 2.38 %, respectively. The application of the reported circuits as a 2-input vector summation circuit has also been included to strengthen the design ideas. HIGHLIGHTS Simple structures of fully integrable current-mode squarers and square-rooters with low component count and lower power dissipation The circuits are insensitive to temperature drift and their gains can be controlled easily by adjusting the bias currents of MO-CCCCTA Bandwidth, static power dissipation, linearity error of square-rooter are 445.63 MHz, 0.17 mW & ≤ 1.12 %; and for the squarer 61.15 MHz, 0.326 mW & 2.38 %, respectively GRAPHICAL ABSTRACT


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7462
Author(s):  
Mariusz Jankowski ◽  
Piotr Zając ◽  
Piotr Amrozik ◽  
Michał Szermer ◽  
Cezary Maj ◽  
...  

In this work, we analysed the difference between the measurement and simulation results of thermal drift of a custom designed capacitive MEMS accelerometer. It was manufactured in X-FAB XMB10 technology together with a dedicated readout circuit in X-FAB XP018 technology. It turned out that the temperature sensitivity of the sensor’s output is nonlinear and particularly strong in the negative Celsius temperature range. It was found that the temperature drift is mainly caused by the MEMS sensor and the influence of the readout circuit is minimal. Moreover, the measurements showed that this temperature dependence is the same regardless of applied acceleration. Simulation of the accelerometer’s model allowed us to estimate the contribution of post-manufacturing mismatch on the thermal drift; for our sensor, the mismatch-induced drift accounted for about 6% of total thermal drift. It is argued that the remaining 94% of the drift could be a result of the presence of residual stress in the structure after fabrication.


Sign in / Sign up

Export Citation Format

Share Document