scholarly journals Effects of the synthetic inertia from wind power on the total system inertia after a frequency disturbance

Author(s):  
F. Gonzalez-Longatt ◽  
E. Chikuni ◽  
W. Stemmet ◽  
K. Folly
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3495
Author(s):  
Qian Long ◽  
Aivaras Celna ◽  
Kaushik Das ◽  
Poul Sørensen

The concept of hybrid wind power plants (HWPPs) that consist of wind, solar and batteries has received a lot of attention, since HWPPs provide a number of advantages thanks to the complementary nature of wind and solar energy and the flexibility of batteries. Nevertheless, converter-based technologies, as interfaces of HWPPs to the utility grid, contribute to the reduction of total system inertia, making the system more volatile and creating additional threats to frequency stability. To address these operational challenges, the capability of supercapacitors (SCs) to provide fast frequency reserve (FFR) is explored in this paper to enhance the frequency response of the HWPP. Two topologies for integrating SCs into the HWPP are proposed: (1) connecting SC to the DC link of wind turbine (WT) via a DC-DC converter interface, (2) directly connecting SC to the DC link of WT without converter interface. Frequency controllers at the asset level are proposed for these two topologies accordingly. The idea of the proposed frequency controller is to provide frequency response by varying SC voltage in proportion to frequency deviation, namely droop-based FFR. A practical SC sizing method for FFR provision is also discussed. The simulation results have shown, that in the case of frequency event, the proposed frequency controllers for SCs in both topologies positively contribute to the frequency of the system by reducing the rate of change of frequency by at least 5% and improving frequency nadir by at least 10%, compared to the case where the SC has no contribution to FFR. However, the capacitor size requirement for directly connected SC is more demanding in order to achieve the same level of improvement. The performance of frequency support has been highly related to total system inertia and control parameters. Therefore, any change to the severity of frequency events or control parameters calls for the reevaluation of the capacitance.


2013 ◽  
Vol 724-725 ◽  
pp. 655-658
Author(s):  
Rui Jing Shi ◽  
Xiao Chao Fan ◽  
Feng Ting Li ◽  
Bo Wei

The application of power communication system in the field of wind power mainly includes the overall system communication and local field communication. During the operation of wind farms, the total system requires that the electric power communication system should provide reliable rapid information channel, accuracy of transmission on a variety of digital business. This article will focus on the application of power communication system between the wind turbine and the booster station, which includes optical fiber communication, communication and leased public circuit, as well as the cable communication, wireless communication, microwave wireless communication. Finally, in the premise of various communications comparison, according to the actual situation of the wind power field, the network transmission rate and reliability should be considered to the requirements of power market.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1687 ◽  
Author(s):  
Irene Muñoz-Benavente ◽  
Anca D. Hansen ◽  
Emilio Gómez-Lázaro ◽  
Tania García-Sánchez ◽  
Ana Fernández-Guillamón ◽  
...  

An alternative approach for combined frequency control in multi-area power systems with significant wind power plant integration is described and discussed in detail. Demand response is considered as a decentralized and distributed resource by incorporating innovative frequency-sensitive load controllers into certain thermostatically controlled loads. Wind power plants comprising variable speed wind turbines include an auxiliary frequency control loop contributing to increase total system inertia in a combined manner, which further improves the system frequency performance. Results for interconnected power systems show how the proposed control strategy substantially improves frequency stability and decreases peak frequency excursion (nadir) values. The total need for frequency regulation reserves is reduced as well. Moreover, the requirements to exchange power in multi-area scenarios are significantly decreased. Extensive simulations under power imbalance conditions for interconnected power systems are also presented in the paper.


2019 ◽  
Vol 13 (15) ◽  
pp. 2807-2816 ◽  
Author(s):  
Ana Fernández‐Guillamón ◽  
Antonio Vigueras‐Rodríguez ◽  
Ángel Molina‐García

2012 ◽  
Vol 36 (1) ◽  
pp. 35-52 ◽  
Author(s):  
André Robitaille ◽  
Innocent Kamwa ◽  
Annissa Heniche Oussedik ◽  
Martin de Montigny ◽  
Nickie Menemenlis ◽  
...  

Recent studies undertaken by Hydro-Québec evaluate three aspects of the integration of wind generation on their system reliability/security. In an operations setting, the impacts on intra-hourly operating reserves and on extra-hourly balancing reserves are examined. On an operations planning horizon, the wind power capacity credit is evaluated for winter peak loading conditions, when very cold temperatures risk disabling part of the wind generation. Depending on the study, various mathematical tools were used to generate the statistical characteristics of the load and anticipated wind generation: time-series analysis, wind simulation at new/future wind plant sites, power system simulation and a posteriori determination of forecast errors. However, in each case the measure used to quantify the impact of wind generation has been related to the change in the variance of the total system uncertainty as a result of the addition of wind power generation.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4314 ◽  
Author(s):  
Maqbool ◽  
Baetens ◽  
Lotfi ◽  
Vandevelde ◽  
Eetvelde

This article provides an agent-based model of a hypothetical standalone electricity network to identify how the feed-in tariffs and the installed capacity of wind power, calculated in percentage of total system demand, affect the electricity consumption from renewables. It includes the mechanism of electricity pricing on the Day Ahead Market (DAM) and the Imbalance Market (IM). The extra production volumes of Electricity from Renewable Energy Sources (RES-E) and the flexibility of electrical consumption of industries is provided as reserves on the IM. Five thousand simulations were run by using the agent-based model to gather data that were then fit in linear regression models. This helped to quantify the effect of feed-in tariffs and installed capacity of wind power on the consumption from renewable energy and market prices. The consumption from renewable sources, expressed as percentage of total system consumption, increased by 8.17% for every 10% increase in installed capacity of wind power. The sharpest increase in renewable energy consumption is observed when a feed-in tariff of 0.04 €/kWh is provided to the wind farm owners, resulting in an average increase of 9.1% and 5.1% in the consumption from renewable sources while the maximum installed capacity of wind power is 35% and 100%, respectively. The regression model for the annualized DAM prices showed an increase by 0.01 €cents/kWh in the DAM prices for every 10% increase in the installed wind power capacity. With every increase of 0.01 €/kWh in the value of feed-in tariffs, the mean DAM price is lowered as compared to the previous value of the feed-in tariff. DAM prices only decrease with increasing installed wind capacity when a feed-in tariff of 0.04 €/kWh is provided. This is observed because all wind power being traded on DAM at a very cheap price. Hence, no volume of electricity is being stored for availability on IM. The regression models for predicting IM prices show that, with every 10% increase in installed capacity of wind power, the annualized IM price decreases by 0.031 and 0.34 €cents/kWh, when installed capacity of wind power is between 0 and 25%, and between 25 and 100%, respectively. The models also showed that, until the maximum installed capacity of wind power is less than 25%, the IM prices increase when the value of feed-in tariff is 0.01 and 0.04 €/kWh, but decrease for a feed-in tariff of 0.02 and 0.03 €/kWh. When installed capacity of wind power is between 25 and 100%, increasing feed-in tariffs to the value of 0.03 €/kWh result in lowering the mean IM price. However, at 0.04 €/kWh, the mean IM price is higher, showing the effect of no storage reserves being available on IM and more expensive reserves being engaged on the IM. The study concludes that the effect of increasing installed capacity of wind power is more significant on increasing consumption of renewable energy and decreasing the DAM and IM prices than the effect of feed-in tariffs. However, the effect of increasing values of both factors on the profit of RES-E producers with storage facilities is not positive, pointing to the need for customized rules and incentives to encourage their market participation and investment in storage facilities.


2003 ◽  
Vol 27 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Shashi Persaud ◽  
Brendan Fox ◽  
Damian Flynn

The paper simulates the potential impact of significant wind power capacity on key operational aspects of a medium-sized grid-power system, viz. generator loading levels, system reserve availability and generator ramping requirements. The measured data, from Northern Ireland, consist of three years of 1/2 hourly metered records of (i) total energy generation and (ii) five wind farms, each of 5 MW capacity. These wind power data were scaled-up to represent a 10% annual energy contribution, taking account of diversity on the specific variability of total wind power output. The wind power generation reduced the system non-wind peak-generation. This reduction equalled 20% of the installed wind power capacity. There was also a reduction in the minimum non-wind generation, which equalled 43% of the wind power capacity. The analysis also showed that the spinning-reserve requirement depended on the accuracy of forecasting wind power ahead of scheduling, i.e. on the operational mode. When wind power was predicted accurately, (i) it was possible to reduce non-wind generation without over-commitment, but, (ii) the spinning-reserve non-wind conventional generation would usually have to be increased by 25% of the wind power capacity, unless quick-start gas generation was available. However, with unpredicted wind power generation, (i) despite reductions in non-wind generation, there was frequent over-commitment of conventional generation, but (ii) usually the spinning-reserve margin could be reduced by 10% of the wind power capacity with the same degree of risk. Finally, it was shown that wind power generation did not significantly increase the ramping duty on the system. For accurately predicted and unpredicted wind power the increases were only 4% and 5% respectively.


Sign in / Sign up

Export Citation Format

Share Document