Utilization of DFIG on an islanded power generation and distribution system

Author(s):  
Rene Rossi
Author(s):  
Cho Cho Myint ◽  
Ohn Zin Lin ◽  
Soe Soe Ei Aung

In Myanmar, as the main power generation is hydro power generation. the utility cannot supply sufficient power to customers during the dry season. Besides interruptions occur frequently due to aging system and lack of prospered protection. Therefore, reliability is an urgent issue in Myanmar. As a result of unbalance between generation and load, the distribution system is getting poor voltage profile, instability and high power losses in high load condition. According to network characteristics, the failure of a component always leads to consequence interruption in a radial distribution system.  Therefore, it is a must consideration to mitigate these challenges to enhance the system reliability. There are many techniques to solve the reliability problems such as reclosers, switching devices (manual and automated switches), system reconfiguration, feeder re-conducting and integration of distributed generation (DG). In this paper, system reliability assessment is evaluated in detail with the integration of the distributed generation such as PV-Diesel Hybrid System. The location of DG is chosen according to the expected energy not supply (EENS) and the voltage drop in proposed system. Next, the optimal sizing of DG is chosen depends on the penetration level of generator. Reliability indices can be evaluated depending on the failure rate(λ), repair time(r) and annual outage time(U) in Electrical Transient and Analysis Program (ETAP) software. The case study of this thesis is carried out in 33/11 kV network which is connected Kyatminton Substation, Kyaukse, Middle Myanmar.


2020 ◽  
Vol 5 (3) ◽  
pp. 321-333
Author(s):  
V. V. Rao ◽  
Zulfan Adi Putra ◽  
M. R. Bilad ◽  
M. D. H. Wirzal ◽  
N. A. H. M. Nordin ◽  
...  

Natural gas is conventionally transported in its liquid form or Liquid Natural Gas (LNG). It is then transported using cryogenic insulated LNG tankers. At receiving terminals, LNG is regasified prior to distributing it through gas distribution system. Seawater has been used as the heat source, which leads to vast amount of cold energy discarded into the water. This work presents the use of LNG cold energy around Melaka Refining Company (MRC). The cold energy is utilized in power generation, propylene refrigeration cycle, and air separation plants. These systems are designed and simulated using a commercial process simulation software. Capital cost (CAPEX) function and revenues of each system are further developed as a function of LNG flowrates. These developed correlations are then used in an optimization problem to seek for the most profitable scenario. The results show that utilizing LNG for air separation unit yields the highest profit compared to power generation and refrigeration plants.


2014 ◽  
Vol 672-674 ◽  
pp. 956-960
Author(s):  
Ke Huang ◽  
Xin Wang ◽  
Yi Hui Zheng ◽  
Li Xue Li ◽  
Yan Ling Liu

To analyze the influence of distribution network with grid-connected photovoltaic (PV) generation on the power supply reliability, in this paper it firstly regards interconnected PV generation as an equivalent generator with rated capacity as well as the island operation mode of PV to set up a model for reliability calculation and analysis. Based on the network equivalent method, the structure of distribution system with PV is simplified and then the reliability indexes of distribution system are worked out based on Failure Mode and Effects Analysis (FMEA). At last, a comparative calculation between the distribution network with incorporated PV generations and that without PV generations is made. After analyzing a real example, the results suggest that integrating PV power generations reasonably into the distribution network can enhance the reliability of whole distribution system.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6532
Author(s):  
Vahab Rostampour ◽  
Thom S. Badings ◽  
Jacquelien M. A. Scherpen

We present a Buildings-to-Grid (BtG) integration framework with intermittent wind-power generation and demand flexibility management provided by buildings. First, we extend the existing BtG models by introducing uncertain wind-power generation and reformulating the interactions between the Transmission System Operator (TSO), Distribution System Operators (DSO), and buildings. We then develop a unified BtG control framework to deal with forecast errors in the wind power, by considering ancillary services from both reserves and demand-side flexibility. The resulting framework is formulated as a finite-horizon stochastic model predictive control (MPC) problem, which is generally hard to solve due to the unknown distribution of the wind-power generation. To overcome this limitation, we present a tractable robust reformulation, together with probabilistic feasibility guarantees. We demonstrate that the proposed demand flexibility management can substitute the traditional reserve scheduling services in power systems with high levels of uncertain generation. Moreover, we show that this change does not jeopardize the stability of the grid or violate thermal comfort constraints of buildings. We finally provide a large-scale Monte Carlo simulation study to confirm the impact of achievements.


2019 ◽  
Vol 2019 (16) ◽  
pp. 2493-2499
Author(s):  
Jianing Gao ◽  
Bei Han ◽  
Chenbo Xu ◽  
Lijun Zhang ◽  
Guojie Li ◽  
...  

2014 ◽  
Vol 960-961 ◽  
pp. 1376-1380
Author(s):  
Chong Xin Xu ◽  
Yan Jun Jiao

Power generation becomes a main way of using new energy. However, the access of distributed generation(DG) causes the ordinary protection system develop a series of problems. In this paper, the structure of distribution network with DG is introduced firstly.Secondly,it is analysed that the effect that DG brings to distribution network protection, and then a new protection scheme of distribution network with DG is put forward. The segment I, II of direction three-current protection on the line which is at the upstream of DG, and the next line’s segment I, II consists of a simple communication unit. Through the comprehensive judgment of two protections’ action results, fault can be isolated in minimum range quickly and accurately. Finally, the correctness and feasibility of the new protection principle are verified by simulating a 10KV distribution system.


Sign in / Sign up

Export Citation Format

Share Document