Mathematical model for real-time assessment of contributions of disturbing sources to power quality level at a Point of Common Coupling

Author(s):  
Yuri Sayenko ◽  
Maria Sukhonos ◽  
Dmitry Kalyuzhniy ◽  
Viktor Bolgov
2022 ◽  
Vol 203 ◽  
pp. 107679
Author(s):  
Oscar Pinzón-Quintero ◽  
Daniel Gaviria-Ospina ◽  
Alejandro Parrado-Duque ◽  
Rusber Rodríguez-Velásquez ◽  
German Osma-Pinto

2014 ◽  
Vol 573 ◽  
pp. 716-721
Author(s):  
S. Rajeshbabu ◽  
B.V. Manikandan

Renewable energy sources provide the additional/satisfy the power to the consumer through power electronics interfaces and integrated with the grid. In grid integration power quality is one of the important parameter that need to be paying more attention. This proposed work focuses on power quality issues in a grid connected renewable energy system. Power quality issues will arises due to many factors here with the by introducing a fault condition in a grid connected renewable energy system the measurements were made at the point of common coupling and the mitigation is done with the help of a dynamic voltage restorer. The dynamic voltage restorer is a device which offers series compensation activated by neural network based controller. The sag improvement and the total harmonic assessment were made at the point of common coupling. Keywords: Neural network, Point of common coupling, Renewable energy source, Power quality, Dynamic voltage restorer ,electric grid.


2017 ◽  
pp. 12-19 ◽  
Author(s):  
Dmitrii V. DVORKIN ◽  
◽  
Maxim A. SILAYEV ◽  
Vladimir N. TUL’SKII ◽  
Stefan PALIS ◽  
...  

2021 ◽  
Author(s):  
Erhan Sezgin ◽  
Anurag Mohapatra ◽  
Vedran S. Peric ◽  
Ozgül Salor ◽  
Thomas Hamacher

<i>The paper has been submitted to PSCC 2022 and is currently awaiting reviews.<br></i><br>This paper proposes and implements, a harmonic analysis algorithm for microgrid Power Hardware-in-the-loop (PHIL) experiments, when the point of common coupling (PCC) voltage cannot be directly wired to the local prosumer controllers due to long distances between them. Using frequency-shifting and filtering ideas, the voltage measurement is converted to magnitude and phase information. This is passed over an asynchronous communication link to another controller, where it is recovered into a waveform after delay compensation. The method allows for accurate power calculations and grid synchronization over distributed prosumer controllers. The proposed method can work at different execution rates depending on real time (RT) workload and is shown to be robust against step changes, harmonics and communication delays. The method is demonstrated with two PHIL experiments at the CoSES, TU Munich lab in grid connected and island mode.


2013 ◽  
Vol 448-453 ◽  
pp. 2660-2666
Author(s):  
Hui Chun Hua ◽  
Xiu Fang Jia ◽  
Hai Qing An ◽  
Shao Guang Zhang

Determining harmonic contribution quantitatively at the point of common coupling is an important task for power quality management. Outliers and influential points could have strong influences on regressors. This paper puts forward a method named reweighted complex least squares to eliminate or reduce the influences to ensure the robustness of the regression. The method can improve precision of the equivalent harmonic impedance and it can get a more reasonable result in harmonic contribution determination than previous methods. A case study based on the IEEE 14-bus test system was conducted, which shows the validity of the proposed method.


Author(s):  
R. Kalpana ◽  
G. Bhuvaneswari ◽  
Bhim Singh ◽  
Shikha Singh ◽  
Sanjay Gairola

This paper presents a new 28-pulse ac-dc converter for enhancing the power quality at the point of common coupling, while feeding a medium capacity switched mode power supply (SMPS). It consists of two series connected 14-pulse ac-dc uncontrolled converters fed by seven phase-shifted ac voltages. The proposed converter is found capable of suppressing up to 27 harmonic currents in the ac mains. The power factor is also improved to near unity over a wide operating range of the SMPS. The design and analysis of the proposed ac-dc converter is carried-out in detail. A laboratory prototype of the autoconnected transformer based 28-pulse ac-dc converter is developed, and various tests have been conducted on it to validate the simulated performance of the proposed converter. Several experimental results are also included to show the effectiveness and robustness of the proposed converter.


Data in Brief ◽  
2021 ◽  
Vol 39 ◽  
pp. 107681
Author(s):  
Emenike Ugwuagbo ◽  
Adeola Balogun ◽  
Ayobami Olajube ◽  
Osita Omeje ◽  
Ayokunle Awelewa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document