Passive Regulation of Switching Frequency in Voltage Source Converter via Predictive Control

Author(s):  
Seyed-Saeed Zabihi ◽  
Mehdi Asadi
Author(s):  
P Anusha ◽  
B V Rajanna

High power demands are usually met by advanced power electronics converters in several large utility and electric drives applications. Applications from high power drives commonly uses solution based multi pulse and multilevel converters. A common DC link with atleast one voltage source converter (VSC) working with almost fundamental switching frequency are used in converters of multipulse type, and each output module is connected with the multipulse transformer in series. When compared to that of solution with single-VSC, Several VSCs generating different triggering pulses are adjused in order to achieve current injected with low specified total harmonic distortion (THD) with losses of abridged switching. Huge structure in complexity and expensive cost expenditure of the multipulse transformer is the major limitation of this scheme. DC link split capacitors in addition are eliminated by modifying the topology of the circuit. Thus, the independent voltages of the DC capacitor are controlled and decreased in number and the flow of third harmonic current component in the transformer is eliminated. The scheme of the designed controller is depending on the derived mathematical system model. Simulaion observation is used to check the scheme performance and efficiency in a detailed way with drive control technique.


2019 ◽  
Vol 9 (17) ◽  
pp. 3513 ◽  
Author(s):  
Mohammed Alhasheem ◽  
Frede Blaabjerg ◽  
Pooya Davari

Finite control set model predictive control (FCS-MPC) methods in different power electronic applications are gaining considerable attention due to their simplicity and fast dynamics. This paper introduces an assessment of the two-level three-phase voltage source converter (2L-VSC) utilizing different MPC schemes with and without a modulation stage. In order to perform such a comparative evaluation, 2L-VSC efficiency and total harmonics distortion of the voltage (THDv) have been investigated, when considering a linear load. The results demonstrate the performance of different MPC algorithms through an experimental verification on a Danfoss converter, and a set of analyses have been studied using the PLECS and MATLAB/SIMULINK together. It can be concluded that a comparable performance is achieved by using conventional MPC (CMPC), improved MPC (IMPC), periodic MPC (PMPC), and MPC scheme with modulator (M 2 PC) controllers. The assessment is critical to classify the strategies as mentioned earlier according to their efficiency. Furthermore, it gives a thorough point of view on which algorithm is suitable for the grid-forming applications.


2020 ◽  
Vol 10 (18) ◽  
pp. 6390
Author(s):  
Mohammed Alhasheem ◽  
Ahmed Abdelhakim ◽  
Frede Blaabjerg ◽  
Paolo Mattavelli ◽  
Pooya Davari

This paper proposes an enhanced finite control set model predictive control (FCS-MPC) strategy for voltage source converter (VSC) with a LC output filter. The proposed control scheme is based on tracking the voltage reference trajectory by using only a single-step prediction within the controller horizon. Besides, the suitability of different frequency control schemes with the proposed scheme to prevent from inherent variable switching behaviour of conventional FCS-MPC is investigated. Based on that, the proposed method targets two major factors influencing power quality in grid forming applications by enhancing the output voltage harmonic distortion and also preventing variable switching behaviour of FCS-MPC. Although compared to multi-step prediction approaches, only a single-step multi-objective cost function to improve computation efficiency is utilized, the introduced control schemes are able to deliver higher power quality compared to its counterpart methods as well. Furthermore, the effect of different applied cost functions on the transient response of the system is studied and investigated for the future use of the VSC in microgrids (MGs). The effectiveness of the proposed scheme was assessed by simulation using MATLAB/SIMULINK and experiment using a 5.5 kVA VSC module and the results were in good agreement.


Author(s):  
Mr. L NarayanaGadupudi Et.al

 Internal Liability of power system transmission lines influenced by the turbulences owing to catastrophic disasters. In order to achieve Constant Voltage Stability at both ends of the transmission lines, Static Synchronous Compensator (STATCOM) is imperative.  Voltage source Converter mechanisms augment with switching frequency control methodologies are widely adopted to regulate the reactive power. By deliberating IEEE Standards, the minimization of Total Harmonic Distortion (THD) is conceivable with STATCOM. This paper depicts the advancement of VSC based STATCOM approaches and the methodologies to minimize the switching losses. Economical management of High-Power ratings systems is also discussed in this paper


Sign in / Sign up

Export Citation Format

Share Document