Evaluation of the Impact of LED and Compact Fluorescent Lamps on the PLC Transmission with X-10 Technology

Author(s):  
A. S. Delfino ◽  
R. P. Brandao ◽  
T. S. Bumpus ◽  
M. Z. Fortes ◽  
H. O. Henriques ◽  
...  
2020 ◽  
pp. 1-78 ◽  
Author(s):  
Eliana Carranza ◽  
Robyn Meeks

Overloaded electrical systems are a major source of unreliable power. Using a randomized saturation design, we estimate the impact of compact fluorescent lamps (CFLs) on electricity reliability and household electricity consumption in the Kyrgyz Republic. Greater saturation of CFLs within a transformer leads to fewer outages, a technological externality benefitting all households, regardless of individual adoption. Spillovers in CFL adoption further reduce electricity consumption, contributing to increased reliability within a transformer. CFLs' impacts on household electricity consumption vary according to the effects on reliability. Receiving CFLs significantly reduces electricity consumption, but increased reliability permits greater consumption of electricity services.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4851
Author(s):  
Jairo Hernández ◽  
Andrés A. Romero ◽  
Jan Meyer ◽  
Ana María Blanco

In the last decade, mainly due to political incentives towards energy efficiency, the share of lamps with power electronic interfaces, like Compact Fluorescent Lamps (CFL) and Light Emitting Diode (LED) lamps, has significantly increased in the residential sector. Their massive use might have a substantial impact on harmonic currents and, consequently, on the current flowing in the neutral conductor. This paper analyzes the impact of modern energy-efficient lighting technologies on the neutral conductor current by using a synthetic Low Voltage residential grid. Different load scenarios reflecting the transition from incandescent lamps, via CFL, to LED lamps are compared concerning the neutral conductor current at different points in the network. The inherent randomness related to the use of lighting devices by each residential customer is considered employing a Monte Carlo simulation. Obtained results show that the use of CFL has a greater impact on the neutral conductor current of Low Voltage (LV) residential grids and that, with increasing use of LED lamps, a decreasing impact can be expected in the future.


Energy ◽  
2009 ◽  
Vol 34 (9) ◽  
pp. 1355-1363 ◽  
Author(s):  
J. Trifunovic ◽  
J. Mikulovic ◽  
Z. Djurisic ◽  
M. Djuric ◽  
M. Kostic

2015 ◽  
Vol 35 (1Sup) ◽  
pp. 89-97 ◽  
Author(s):  
Gabriel Alexis Malagon ◽  
Jeisson Bello Peña ◽  
Gabriel Ordóñez Plata ◽  
Cesar Duarte Gualdrón

<p class="MsoNormal" style="text-align: justify;"><span style="font-family: 'Century Gothic', sans-serif; font-size: 8pt; letter-spacing: -0.1pt;"><span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">This article presents an analysis and discussion on the performance of a circuit-based model for Compact Fluorescent Lamps (CFL) <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">in a 120V 60Hz power grid. This model is proposed and validated in previous scientific literature for CFLs in 230V 50Hz systems. <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">Nevertheless, the derivation of this model is not straightforward to follow and its performance in 120V 60Hz systems is a matter of <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">research work. In this paper, the analytical derivation of this CFL model is presented in detail and its performance is discussed when <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">predicting the current of a CFL designed to operate in a 120V 60Hz electrical system. The derived model is separately implemented <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">in both MATLAB<span style="font-family: OptimaLTStd; font-size: 5pt; color: #231f20; font-style: normal; font-variant: normal;">® <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">and ATP-EMTP<span style="font-family: OptimaLTStd; font-size: 5pt; color: #231f20; font-style: normal; font-variant: normal;">® <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">software using two different sets of parameters previously proposed for 230V 50Hz CFLs. These <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">simulation results are compared against laboratory measurements using a programmable AC voltage source. The measurements <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">and simulations considered seven CFLs 110/127V 60Hz with different power ratings supplied by a sinusoidal (not distorted) voltage <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">source. The simulations under these conditions do not properly predict the current measurements and therefore the set of parameters <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">and/or the model itself need to be adjusted for 120V 60Hz power grids.</span></span></span></span></span></span></span></span></span><br style="font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px;" /></span></span></span></span></span></span></p>


Sign in / Sign up

Export Citation Format

Share Document