High-efficiency space and terrestrial multijunction solar cells through bandgap control in cell structures

Author(s):  
R.R. King ◽  
C.M. Fetzer ◽  
P.C. Colter ◽  
K.M. Edmondson ◽  
J.H. Ermer ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
J. Li ◽  
A. Aierken ◽  
Y. Liu ◽  
Y. Zhuang ◽  
X. Yang ◽  
...  

The demands for space solar cells are continuously increasing with the rapid development of space technologies and complex space missions. The space solar cells are facing more critical challenges than before: higher conversion efficiency and better radiation resistance. Being the main power supply in spacecrafts, III-V multijunction solar cells are the main focus for space application nowadays due to their high efficiency and super radiation resistance. In multijunction solar cell structure, the key to obtaining high crystal quality and increase cell efficiency is satisfying the lattice matching and bandgap matching conditions. New materials and new structures of high efficiency multijunction solar cell structures are continuously coming out with low-cost, lightweight, flexible, and high power-to-mass ratio features in recent years. In addition to the efficiency and other properties, radiation resistance is another sole criterion for space solar cells, therefore the radiation effects of solar cells and the radiation damage mechanism have both been widely studied fields for space solar cells over the last few decades. This review briefly summarized the research progress of III-V multijunction solar cells in recent years. Different types of cell structures, research results and radiation effects of these solar cell structures under different irradiation conditions are presented. Two main solar cell radiation damage evaluation models—the equivalent fluence method and displacement damage dose method—are introduced.


2007 ◽  
Vol 989 ◽  
Author(s):  
Jason Collins ◽  
Nikolas J. Podraza ◽  
Jian Li ◽  
Xinmin Cao ◽  
Xunming Deng ◽  
...  

AbstractPhase diagrams have been established to describe very high frequency (vhf) plasma-enhanced chemical vapor deposition (PECVD) processes for intrinsic hydrogenated silicon (Si:H) and silicon-germanium alloy (Si1-xGex:H) thin films using crystalline Si substrates that have been over-deposited with n-type amorphous Si:H (a-Si:H). The Si:H and Si1-xGex:H processes are applied for the top and middle i-layers of triple-junction a-Si:H-based n-i-p solar cells fabricated at University of Toledo. Identical n/i cell structures were co-deposited on textured Ag/ZnO back-reflectors in order to correlate the phase diagram and the performance of single-junction solar cells, the latter completed through over-deposition of the p-layer and top contact. This study has reaffirmed that the highest efficiencies for a-Si:H and a-Si1-xGex:H solar cells are obtained when the i-layers are prepared under maximal H2 dilution conditions.


2014 ◽  
Vol 1 (3-4) ◽  
Author(s):  
Nikhil Jain ◽  
Mantu K. Hudait

AbstractAchieving high-efficiency solar cells and at the same time driving down the cell cost has been among the key objectives for photovoltaic researchers to attain a lower levelized cost of energy (LCOE). While the performance of silicon (Si) based solar cells have almost saturated at an efficiency of ~25%, III–V compound semiconductor based solar cells have steadily shown performance improvement at ~1% (absolute) increase per year, with a recent record efficiency of 44.7%. Integration of such high-efficiency III–V multijunction solar cells on significantly cheaper and large area Si substrate has recently attracted immense interest to address the future LCOE roadmaps by unifying the high-efficiency merits of III–V materials with low-cost and abundance of Si. This review article will discuss the current progress in the development of III–V multijunction solar cell integration onto Si substrate. The current state-of-the-art for III–V-on-Si solar cells along with their theoretical performance projections is presented. Next, the key design criteria and the technical challenges associated with the integration of III–V multijunction solar cells on Si are reviewed. Different technological routes for integrating III–V solar cells on Si substrate through heteroepitaxial integration and via mechanical stacking approach are presented. The key merits and technical challenges for all of the till-date available technologies are summarized. Finally, the prospects, opportunities and future outlook toward further advancing the performance of III–V-on-Si multijunction solar cells are discussed. With the plummeting price of Si solar cells accompanied with the tremendous headroom available for improving the III–V solar cell efficiencies, the future prospects for successful integration of III–V solar cell technology onto Si substrate look very promising to unlock an era of next generation of high-efficiency and low-cost photovoltaics.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Xixiang Xu ◽  
Dave Beglau ◽  
Scott Ehlert ◽  
Yang Li ◽  
Tining Su ◽  
...  

AbstractWe have developed high efficiency large area a-Si:H and a-SiGe:H multi-junction solar cells using a Modified Very High Frequency (MVHF) glow discharge process. We conducted a comparative study for different cell structures, and compared the initial and stable performance and light-induced degradation of solar cells made using MVHF and RF techniques. Besides high efficiency, the MVHF cells also demonstrate superior light stability, showing <10% degradation after 1000 hour of one-sun light soaking at 50 °C. We also studied light-induced defect level and hydrogen evolution characteristics of MVHF deposited a-SiGe:H films and compared them with the RF deposited films.


Author(s):  
Victor Orejuela ◽  
Ivan Garcia ◽  
Clara Sanchez ◽  
Manuel Hinojosa ◽  
Shabnam Dadgostar ◽  
...  

Author(s):  
M. Rizwan

Solar cells convert sunlight into electricity directly. It is a reliable, non-toxic and pollution free source of electricity. Since 19th century researchers have been trying to investigate different materials for solar cell devices. Commercially, Si based solar are predominate in this field, however, with passage of time different materials have been reported. Solar cell techniques are based on three different generations. 1st generation is based on Si and 2nd generation includes thin-films of CuInGaSe, GaAs, CdTe and GaInP etc. whereas 3rd generation is based on organic, hybrid perovskites, quantum dot (QD)-sensitizers & dye-sensitizers solar cells. Among all these, the 3rd generation solar cells are the most efficient and more cost effective than 1nd and 2nd generation solar cells. The 2nd generation is less costly but also less efficient compared to 1st generation. 3rd generation faces degradation of the photovoltaic materials which is a major problem. In this chapter different reported materials since 19th century for solar cells are mentioned. The past and present scenarios of solar cells are discussed comprehensively. It is observed that Si-based and multijunction solar cells dominate the market. Although, theoretically it is reported that hybrid perovskites and quantum dot materials for solar cell are the most efficient materials for photovoltaic PV devices. In spite of the high efficiency the stability of organic, hybrid perovskites, QD-sensitizers &dye-sensitizer materials is a big challenge.


2014 ◽  
Vol 49 (8) ◽  
pp. NA-NA
Author(s):  
G. Timò ◽  
G. Abagnale ◽  
N. Armani ◽  
E. Malvisi ◽  
G. Carbi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document