scholarly journals Transmission Electron Microscopy Studies of Transition Metal Oxides Employed as Carrier Selective Contacts in Silicon Solar Cells

Author(s):  
Haider Ali ◽  
James Bullock ◽  
Geoffrey Gregory ◽  
Xinbo Yang ◽  
Matthew Schneider ◽  
...  
2000 ◽  
Vol 6 (S2) ◽  
pp. 176-177
Author(s):  
R.M. Stroud ◽  
J.H. Scott

Particulate, mixed-valence transition metal oxides are frequently used for battery, catalytic and magnetic applications. For example, the Li ion exchange battery exploits charge transfer of mixed Mn+3, Mn+4 materials. Charge localization and phase separation, especially at particle surfaces, are critical issues for determining the materials’ useful properties, be it catalytic activity or saturation magnetization. The ability to image the charge localization and correlate this with crystallographic information would be extremely useful in the study of this class of materials. Using energy-filtered transmission electron microscopy (EFTEM), valence maps of Mn and Co with a ∼ 2 nm scale have been obtained for bulk samples. In principal this technique can de directly extended to the case of particulate samples, however there are some additional experimental challenges, such as thickness and edge effects, that must be addressed. We demonstrate here the feasibility of valence mapping of particulate samples, and discuss the factors that limit quantitative data extraction from the maps.


2017 ◽  
Vol 23 (5) ◽  
pp. 900-904 ◽  
Author(s):  
Haider Ali ◽  
Xinbo Yang ◽  
Klaus Weber ◽  
Winston V. Schoenfeld ◽  
Kristopher O. Davis

AbstractIn this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21.6% obtained on n-type cells, featuring SiO2/TiO2/Al rear contacts and after forming gas annealing (FGA) at 350°C, is due to strong surface passivation of SiO2/TiO2 stack as well as low contact resistivity at the Si/SiO2/TiO2 heterojunction. This can be attributed to the transformation of amorphous TiO2 to a conducting TiO2−x phase. Conversely, the low efficiency (9.8%) obtained on cells featuring an a-Si:H/TiO2/Al rear contact is due to severe degradation of passivation of the a-Si:H upon FGA.


Sign in / Sign up

Export Citation Format

Share Document