Probing the reduction dynamics of transition metal oxides via in situ transmission electron microscopy

2021 ◽  
Author(s):  
Yakub Fam ◽  
2000 ◽  
Vol 6 (S2) ◽  
pp. 176-177
Author(s):  
R.M. Stroud ◽  
J.H. Scott

Particulate, mixed-valence transition metal oxides are frequently used for battery, catalytic and magnetic applications. For example, the Li ion exchange battery exploits charge transfer of mixed Mn+3, Mn+4 materials. Charge localization and phase separation, especially at particle surfaces, are critical issues for determining the materials’ useful properties, be it catalytic activity or saturation magnetization. The ability to image the charge localization and correlate this with crystallographic information would be extremely useful in the study of this class of materials. Using energy-filtered transmission electron microscopy (EFTEM), valence maps of Mn and Co with a ∼ 2 nm scale have been obtained for bulk samples. In principal this technique can de directly extended to the case of particulate samples, however there are some additional experimental challenges, such as thickness and edge effects, that must be addressed. We demonstrate here the feasibility of valence mapping of particulate samples, and discuss the factors that limit quantitative data extraction from the maps.


2005 ◽  
Vol 20 (7) ◽  
pp. 1785-1791 ◽  
Author(s):  
T. Vystavel ◽  
S.A. Koch ◽  
G. Palasantzas ◽  
J.Th.M. De Hosson

The structural stability of transition metal nanoclusters has been scrutinized with in situ transmission electron microscopy as a function of temperature. In particular iron, cobalt, niobium, and molybdenum clusters with diameters around 5 nm have been investigated. During exposure to air, a thin oxide shell with a thickness of 2 nm is formed around the iron and cobalt clusters, which is thermally unstable under moderate high vacuum annealing above 200 °C. Interestingly, niobium clusters oxidize only internally at higher temperatures without the formation of an oxide shell. They are unaffected under electron beam irradiation, whereas iron and cobalt undergo severe structural changes. Further, no cluster coalescence of niobium takes place, even during annealing up to 800 °C, whereas iron and cobalt clusters coalesce after decomposition of the oxide, as long as the clusters are in close contact. In contrast to niobium, molybdenum clusters do not oxidize upon annealing; they are stable under electron beam irradiation and coalesce at temperatures higher than 800 °C. In all cases, the coalescence process indicates a strong influence of the local environment of the cluster.


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
T. Dewolf ◽  
D. Cooper ◽  
N. Bernier ◽  
V. Delaye ◽  
A. Grenier ◽  
...  

Abstract Forming and breaking a nanometer-sized conductive area are commonly accepted as the physical phenomenon involved in the switching mechanism of oxide resistive random access memories (OxRRAM). This study investigates a state-of-the-art OxRRAM device by in-situ transmission electron microscopy (TEM). Combining high spatial resolution obtained with a very small probe scanned over the area of interest of the sample and chemical analyses with electron energy loss spectroscopy, the local chemical state of the device can be compared before and after applying an electrical bias. This in-situ approach allows simultaneous TEM observation and memory cell operation. After the in-situ forming, a filamentary migration of titanium within the dielectric hafnium dioxide layer has been evidenced. This migration may be at the origin of the conductive path responsible for the low and high resistive states of the memory.


Sign in / Sign up

Export Citation Format

Share Document