2002 ◽  
Vol 49 (1-2) ◽  
pp. 221-236 ◽  
Author(s):  
YOON-HO KIM ◽  
SERGEI KULIK ◽  
YANHUA SHIH

2006 ◽  
Vol 04 (02) ◽  
pp. 341-346 ◽  
Author(s):  
MING YANG ◽  
ZHUO-LIANG CAO

A teleportation scheme for unknown atomic states is proposed in cavity QED. The Bell state measurement is not needed in the teleportation process, and the success probability can reach 1.0. In addition, the current scheme is insensitive to the cavity decay and thermal field.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 552
Author(s):  
Jianming Wen ◽  
Irina Novikova ◽  
Chen Qian ◽  
Chuanwei Zhang ◽  
Shengwang Du

By coherently combining advantages while largely avoiding limitations of two mainstream platforms, optical hybrid entanglement involving both discrete and continuous variables has recently garnered widespread attention and emerged as a promising idea for building heterogenous quantum networks. In contrast to previous results, here we propose a new scheme to remotely generate hybrid entanglement between discrete polarization and continuous quadrature optical qubits heralded by two-photon Bell-state measurement. As a novel nonclassical light resource, we further use it to discuss two examples of ways—entanglement swapping and quantum teleportation—in which quantum information processing and communications could make use of this hybrid technique.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
F. Basso Basset ◽  
F. Salusti ◽  
L. Schweickert ◽  
M. B. Rota ◽  
D. Tedeschi ◽  
...  

AbstractEfficient all-photonic quantum teleportation requires fast and deterministic sources of highly indistinguishable and entangled photons. Solid-state-based quantum emitters—notably semiconductor quantum dots—are a promising candidate for the role. However, despite the remarkable progress in nanofabrication, proof-of-concept demonstrations of quantum teleportation have highlighted that imperfections of the emitter still place a major roadblock in the way of applications. Here, rather than focusing on source optimization strategies, we deal with imperfections and study different teleportation protocols with the goal of identifying the one with maximal teleportation fidelity. Using a quantum dot with sub-par values of entanglement and photon indistinguishability, we show that the average teleportation fidelity can be raised from below the classical limit to 0.842(14), adopting a polarization-selective Bell state measurement and moderate spectral filtering. Our results, which are backed by a theoretical model that quantitatively explains the experimental findings, loosen the very stringent requirements set on the ideal entangled-photon source and highlight that imperfect quantum dots can still have a say in teleportation-based quantum communication architectures.


2017 ◽  
Vol 95 (5) ◽  
pp. 498-503
Author(s):  
Syed Tahir Amin ◽  
Aeysha Khalique

We present our model to teleport an unknown quantum state using entanglement between two distant parties. Our model takes into account experimental limitations due to contribution of multi-photon pair production of parametric down conversion source, inefficiency, dark counts of detectors, and channel losses. We use a linear optics setup for quantum teleportation of an unknown quantum state by the sender performing a Bell state measurement. Our theory successfully provides a model for experimentalists to optimize the fidelity by adjusting the experimental parameters. We apply our model to a recent experiment on quantum teleportation and the results obtained by our model are in good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document