Criticality Analysis Method Based on Integrated Importance Measure

Author(s):  
Shubin Si ◽  
Wenhai He ◽  
Xianzhi Wang
Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 676
Author(s):  
Dimitrios Z. Politis ◽  
Stelios M. Potirakis ◽  
Yiannis F. Contoyiannis ◽  
Sagardweep Biswas ◽  
Sudipta Sasmal ◽  
...  

In this work we present the statistical and criticality analysis of the very low frequency (VLF) sub-ionospheric propagation data recorded by a VLF/LF radio receiver which has recently been established at the University of West Attica in Athens (Greece). We investigate a very recent, strong (M6.9), and shallow earthquake (EQ) that occurred on 30 October 2020, very close to the northern coast of the island of Samos (Greece). We focus on the reception data from two VLF transmitters, located in Turkey and Israel, on the basis that the EQ’s epicenter was located within or very close to the 5th Fresnel zone, respectively, of the corresponding sub-ionospheric propagation path. Firstly, we employed in our study the conventional analyses known as the nighttime fluctuation method (NFM) and the terminator time method (TTM), aiming to reveal any statistical anomalies prior to the EQ’s occurrence. These analyses revealed statistical anomalies in the studied sub-ionospheric propagation paths within ~2 weeks and a few days before the EQ’s occurrence. Secondly, we performed criticality analysis using two well-established complex systems’ time series analysis methods—the natural time (NT) analysis method, and the method of critical fluctuations (MCF). The NT analysis method was applied to the VLF propagation quantities of the NFM, revealing criticality indications over a period of ~2 weeks prior to the Samos EQ, whereas MCF was applied to the raw receiver amplitude data, uncovering the time excerpts of the analyzed time series that present criticality which were closest before the Samos EQ. Interestingly, power-law indications were also found shortly after the EQ’s occurrence. However, it is shown that these do not correspond to criticality related to EQ preparation processes. Finally, it is noted that no other complex space-sourced or geophysical phenomenon that could disturb the lower ionosphere did occur during the studied time period or close after, corroborating the view that our results prior to the Samos EQ are likely related to this mainshock.


2018 ◽  
Vol 20 (1) ◽  
pp. 1 ◽  
Author(s):  
Julwan Hendry Purba ◽  
Deswandri Deswandri

THE IMPLEMENTATION OF IMPORTANCE MEASURE APPROACHES FOR CRITICALITY ANALYSIS IN FAULT TREE ANALYSIS: A REVIEW.Fault tree analysis (FTA) has been widely applied in nuclear power plant (NPP) probabilistic safety assessment to evaluate the reliability of a safety system. In FTA, criticality analysis is performed to identify the weakest paths in the system designs and components. For this purpose, an importance measure approach can be applied. Risk managers can apply information obtained from this analysis to improve safety by implementing risk reduction measure into the new design or build a more innovative design. Various importance measure approaches have been developed and proposed for criticality analysis in FTA. Each important measure approach offers specific purposes and advantages but has limitations. Therefore, it is necessary to understand characteristics of each approach in order to select the most appropriate approach to reach the purpose of the study. The objective of this study is to review the current implementations of importance measure approaches to rank individual basic events and/or minimal cut sets regarding their contributions to the unreliability or unavailability of NPP safety systems. This study classified importance measure approaches into two groups, i.e. probability–based importance measure approaches and fuzzy–based importance measure approaches. This study concluded that clear understanding of the purpose of the study, the type of reliability data at hands, and the uncertainty in the calculation need to be considered prior to the selection of the appropriate importance measure approach to the study of interest. 


2019 ◽  
Vol 13 (7) ◽  
pp. 1205-1213
Author(s):  
Zhiyong Ma ◽  
Dameng Wang ◽  
Wei Teng ◽  
Yibing Liu

Author(s):  
Wenbin Ruan ◽  
Zhenzhou Lu ◽  
Longfei Tian

To overcome the disadvantage of traditional variance-based importance measures, i.e. the effects of different realizations of input variables on output response may mutually counteract each other, a modified variance-based importance measure is presented for importance analysis of the input variables. The proposed measure analyses the importance of the input variables comprehensively in terms of the expectation and variance of the output response. Compared with the traditional variance-based importance analysis method, the modified importance measure indices not only reflect the old one, but also provide a very useful supplement for it. Furthermore, combined with the advantages of the state dependent parameter model, a solution to the proposed measure indices is provided. Several examples are introduced to show that the modified importance measure is more comprehensive and reasonable, and the solution based on the state dependent parameter method can improve computational efficiency considerably with acceptable precision.


2013 ◽  
Vol 401-403 ◽  
pp. 1373-1376
Author(s):  
En Xiang Du ◽  
Wei Wang ◽  
Lei Chang ◽  
Jing Jing Ren

Traditional FMECA (Failure Mode Effect and Criticality Analysis) method is used to analyze the macro-failure mode effect and criticality. And the micro-failure mechanism and the rule of evolution of the weaponry conditions rarely involved. So it is difficult to adapt to the application demands of Health Management System for Weaponry. The deficiency of traditional and improved FMECA is analyzed and FMECA method of Health Management-Oriented is proposed in the text. By analyzing the launching and controlling system of vehicle antitank missile in the new FMECA method, showing that this method is applicable and reasonable.


Sign in / Sign up

Export Citation Format

Share Document