scholarly journals A Review of Signal Processing Techniques for Non-Invasive Fetal Electrocardiography

2020 ◽  
Vol 13 ◽  
pp. 51-73 ◽  
Author(s):  
Radana Kahankova ◽  
Radek Martinek ◽  
Rene Jaros ◽  
Khosrow Behbehani ◽  
Adam Matonia ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2479 ◽  
Author(s):  
Faheem Khan ◽  
Asim Ghaffar ◽  
Naeem Khan ◽  
Sung Ho Cho

Non-invasive remote health monitoring plays a vital role in epidemiological situations such as SARS outbreak (2003), MERS (2015) and the recently ongoing outbreak of COVID-19 because it is extremely risky to get close to the patient due to the spread of contagious infections. Non-invasive monitoring is also extremely necessary in situations where it is difficult to use complicated wired connections, such as ECG monitoring for infants, burn victims or during rescue missions when people are buried during building collapses/earthquakes. Due to the unique characteristics such as higher penetration capabilities, extremely precise ranging, low power requirement, low cost, simple hardware and robustness to multipath interferences, Impulse Radio Ultra Wideband (IR-UWB) technology is appropriate for non-invasive medical applications. IR-UWB sensors detect the macro as well as micro movement inside the human body due to its fine range resolution. The two vital signs, i.e., respiration rate and heart rate, can be measured by IR-UWB radar by measuring the change in the magnitude of signal due to displacement caused by human lungs, heart during respiration and heart beating. This paper reviews recent advances in IR- UWB radar sensor design for healthcare, such as vital signs measurements of a stationary human, vitals of a non-stationary human, vital signs of people in a vehicle, through the wall vitals measurement, neonate’s health monitoring, fall detection, sleep monitoring and medical imaging. Although we have covered many topics related to health monitoring using IR-UWB, this paper is mainly focused on signal processing techniques for measurement of vital signs, i.e., respiration and heart rate monitoring.


Author(s):  
Leif Sörnmo ◽  
Martin Stridh ◽  
Daniela Husser ◽  
Andreas Bollmann ◽  
S. Bertil Olsson

The analysis of atrial fibrillation in non-invasive ECG recordings has received considerable attention in recent years, spurring the development of signal processing techniques for more advanced characterization of the atrial waveforms than previously available. The present paper gives an overview of different approaches to the extraction of atrial activity in the ECG and to the characterization of the resulting atrial signal with respect to its spectral properties. So far, the repetition rate of the atrial waves is the most studied parameter and its significance in clinical management is briefly considered, including the identification of pathomechanisms and prediction of therapy efficacy.


2017 ◽  
Author(s):  
Sujeet Patole ◽  
Murat Torlak ◽  
Dan Wang ◽  
Murtaza Ali

Automotive radars, along with other sensors such as lidar, (which stands for “light detection and ranging”), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter- wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade-off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird’s-eye view to the existing research community.


Sign in / Sign up

Export Citation Format

Share Document