A Quest of Self-Explainability: When Causal Diagrams meet Autonomous Urban Traffic Manoeuvres

Author(s):  
Maike Schwammberger
2015 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Hamid Reza Samadi ◽  
Mohammad Reza Samadi

Due to the development of cities as well as rapid population growth, urban traffic is increasing nowadays. Hence, to improve traffic flow, underground structures such as metro, especially in metropolises, are inevitable. This paper is a research on the twin tunnels Of Isfahan's metro between Shariaty station and Azadi station from the North towards the South. In this study, simultaneous drilling of subway's twin tunnels is simulated by means of Finite Difference Method (FDM) and FLAC 3D software. Moreover, the lowest distance between two tunnels is determined in a way that the Law of Super Position could be utilized to manually calculate the amount of surface subsidence, resulted by drilling two tunnels, by employing the results of the analysis of single tunnels without using simultaneous examination and simulation. In this paper, this distance is called "effective distance". For this purpose, first, the optimum dimensions of the model is chosen and then, five models with optimum dimensions will be analyzed separately, each of which in three steps. The results of analyses shows that the proportions (L/D) greater than or equal 2.80, the Law of Super Position can be applied for prediction of surface subsidence, caused by twin tunnels' construction


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Rusmadi Suyuti

Traffic information condition is a very useful  information for road user because road user can choose his best route for each trip from his origin to his destination. The final goal for this research is to develop real time traffic information system for road user using real time traffic volume. Main input for developing real time traffic information system is an origin-destination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or road side interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the alternative of using traffic counts to estimate O-D matrices is particularly attractive. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of the approach is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods. The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Two types of demand models have been used: gravity (GR) and gravity-opportunity (GO) models. Four estimation methods have been analysed and tested to calibrate the transport demand models from traffic counts, namely: Non-Linear-Least-Squares (NLLS), Maximum-Likelihood (ML), Maximum-Entropy (ME) and Bayes-Inference (BI). The Bandung’s Urban Traffic Movement survey has been used to test the developed method. Based on several statistical tests, the estimation methods are found to perform satisfactorily since each calibrated model reproduced the observed matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and equilibrium assignment.  


2018 ◽  
Author(s):  
Aboutaib Brahim ◽  
Bahili Lahoucine ◽  
Fonlupt Cyril ◽  
Virginie Marion ◽  
Sebastiaan Verelst

Sign in / Sign up

Export Citation Format

Share Document