Status of Analytical Optimization of FET LNAs Using Noise Transformation Matrix (Invited Paper)

Author(s):  
Chinchun Meng
Author(s):  
P. E. Nikravesh ◽  
G. Gim

Abstract This paper presents a systematic method for deriving the minimum number of equations of motion for multibody system containing closed kinematic loops. A set of joint or natural coordinates is used to describe the configuration of the system. The constraint equations associated with the closed kinematic loops are found systematically in terms of the joint coordinates. These constraints and their corresponding elements are constructed from known block matrices representing different kinematic joints. The Jacobian matrix associated with these constraints is further used to find a velocity transformation matrix. The equations of motions are initially written in terms of the dependent joint coordinates using the Lagrange multiplier technique. Then the velocity transformation matrix is used to derive a minimum number of equations of motion in terms of a set of independent joint coordinates. An illustrative example and numerical results are presented, and the advantages and disadvantages of the method are discussed.


Author(s):  
Guangfa Yao

Immersed boundary method has got increasing attention in modeling fluid-solid body interaction using computational fluid dynamics due to its robustness and simplicity. It usually simulates fluid-solid body interaction by adding a body force in the momentum equation. This eliminates the body conforming mesh generation that frequently requires a very labor-intensive and challenging task. But accurately tracking an arbitrary solid body is required to simulate most real world problems. In this paper, a few methods that are used to track a rigid solid body in a fluid domain are briefly reviewed. A new method is presented to track an arbitrary rigid solid body by solving a transformation matrix and identifying it using a level set function. Knowing level set function, the solid volume fraction can be derived if needed. A three-dimensional example is used to study a few methods used to represent and solve the transformation matrix, and demonstrate the presented new method.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. C159-C170 ◽  
Author(s):  
Yuriy Ivanov ◽  
Alexey Stovas

Based on the rotation of a slowness surface in anisotropic media, we have derived a set of mapping operators that establishes a point-to-point correspondence for the traveltime and relative-geometric-spreading surfaces between these calculated in nonrotated and rotated media. The mapping approach allows one to efficiently obtain the aforementioned surfaces in a rotated anisotropic medium from precomputed surfaces in the nonrotated medium. The process consists of two steps: calculation of a necessary kinematic attribute in a nonrotated, e.g., orthorhombic (ORT), medium, and subsequent mapping of the obtained values to a transformed, e.g., rotated ORT, medium. The operators we obtained are applicable to anisotropic media of any type; they are 3D and are expressed through a general form of the transformation matrix. The mapping equations can be used to develop moveout and relative-geometric-spreading approximations in rotated anisotropic media from existing approximations in nonrotated media. Although our operators are derived in case of a homogeneous medium and for a one-way propagation only, we discuss their extension to vertically heterogeneous media and to reflected (and converted) waves.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 9614-9622 ◽  
Author(s):  
Jasmine Cashbaugh ◽  
Christopher Kitts

Author(s):  
E. Hellner

AbstractA systematic description and classification of inorganic structure types is proposed on the basis of homogeneous or heterogeneous point configurations (Bauverbände) described by invariant lattice complexes and coordination polyhedra; subscripts or matrices explain the transformation of the complexes in respect (M) to their standard setting; the value of the determinant of the transformation matrix defines the order of the complex. The Bauverbände (frameworks) may be described by three-dimensional networks or two-dimensional nets explicitely shown with structures types of the


2018 ◽  
Vol 613 ◽  
pp. A6 ◽  
Author(s):  
J. Wagner ◽  
N. Tessore

We determine the transformation matrix that maps multiple images with identifiable resolved features onto one another and that is based on a Taylor-expanded lensing potential in the vicinity of a point on the critical curve within our model-independent lens characterisation approach. From the transformation matrix, the same information about the properties of the critical curve at fold and cusp points can be derived as we previously found when using the quadrupole moment of the individual images as observables. In addition, we read off the relative parities between the images, so that the parity of all images is determined when one is known. We compare all retrievable ratios of potential derivatives to the actual values and to those obtained by using the quadrupole moment as observable for two- and three-image configurations generated by a galaxy-cluster scale singular isothermal ellipse. We conclude that using the quadrupole moments as observables, the properties of the critical curve are retrieved to a higher accuracy at the cusp points and to a lower accuracy at the fold points; the ratios of second-order potential derivatives are retrieved to comparable accuracy. We also show that the approach using ratios of convergences and reduced shear components is equivalent to ours in the vicinity of the critical curve, but yields more accurate results and is more robust because it does not require a special coordinate system as the approach using potential derivatives does. The transformation matrix is determined by mapping manually assigned reference points in the multiple images onto one another. If the assignment of the reference points is subject to measurement uncertainties under the influence of noise, we find that the confidence intervals of the lens parameters can be as large as the values themselves when the uncertainties are larger than one pixel. In addition, observed multiple images with resolved features are more extended than unresolved ones, so that higher-order moments should be taken into account to improve the reconstruction precision and accuracy.


Sign in / Sign up

Export Citation Format

Share Document