Inspection of Rail Sweep Using Matrix Pencil Method Based-Radar Target Identification

Author(s):  
Pongsathorn Chomdee ◽  
Akkarat Boonpoonga ◽  
Prayoot Akkaraekthalin ◽  
Titipong Lertwiriyaprapa
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lakkhana Bannawat ◽  
Akkarat Boonpoonga ◽  
Santana Burintramart ◽  
Prayoot Akkaraekthalin

An investigation on the improvement of the resolution of a radar target identification system is presented in this paper. Degradation of resolution is mainly due to influence factors associated with antennas, including the strong coupling between transmitting and receiving antennas and the variation in the antenna response. A filtering technique was therefore introduced to mitigate the underlying problem. In the technique, the antenna effects were filtered out of the total response backscattered from the objects in the radar target identification system. The short-time matrix pencil method (STMPM) was then employed to extract the poles from the backscattered response in order to identify the object. Simulation and experimentation examples are illustrated to confirm the improvement of the resolution by filtering the antenna effects. The simulation and experimentation were divided into several categories, that is, different antennas and differently shaped objects, in order to validate the advantage of filtering the antenna effects. They were setup in order to demonstrate that the poles obtained from performing the STMPM without the filtering technique were mainly because of the antenna rather than the object’s characteristic. The results showed that the resolution of the identification was significantly increased when performing pole extraction and filtering the antenna effects.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mahmoud Khodjet-Kesba ◽  
Khalil El Khamlichi Drissi ◽  
Sukhan Lee ◽  
Kamal Kerroum ◽  
Claire Faure ◽  
...  

Feature extraction is a challenging problem in radar target identification. In this paper, we propose a new approach of feature extraction by using Matrix Pencil Method in Frequency Domain (MPMFD). The proposed method takes into account not only the magnitude of the signal, but also its phase, so that all the physical characteristics of the target will be considered. With this method, the separation between the early time and the late time is not necessary. The proposed method is compared to Matrix Pencil Method in Time Domain (MPMTD). The methods are applied on UWB backscattered signal from three canonical targets (thin wire, sphere, and cylinder). MPMFD is applied on a complex field (real and imaginary parts of the signal). To the best of our knowledge, this comparison and the reconstruction of the complex electromagnetic field by MPMFD have not been done before. We show the effect of the two extraction methods on the accuracy of three different classifiers: Naïve bayes (NB), K-Nearest Neighbor (K-NN), and Support Vector Machine (SVM). The results show that the accuracy of classification is better when using extracted features by MPMFD with SVM.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5065
Author(s):  
Daniel Chaparro-Arce ◽  
Sergio Gutierrez ◽  
Andres Gallego ◽  
Cesar Pedraza ◽  
Felix Vega ◽  
...  

This paper presents a technique, based on the matrix pencil method (MPM), for the compression of underwater acoustic signals produced by boat engines. The compressed signal, represented by its complex resonance expansion, is intended to be sent over a low-bit-rate wireless communication channel. We demonstrate that the method can provide data compression greater than 60%, ensuring a correlation greater than 93% between the reconstructed and the original signal, at a sampling frequency of 2.2 kHz. Once the signal was reconstituted, a localization process was carried out with the time reversal method (TR) using information from four different sensors in a simulation environment. This process sought to achieve the identification of the position of the ship using only passive sensors, considering two different sensor arrangements.


Sign in / Sign up

Export Citation Format

Share Document