Multiband 2×1 annular ring microstrip antenna with defected ground structure for c and ku band

Author(s):  
Neha Rhangdale ◽  
Prashant Yadav
2018 ◽  
Vol 218 ◽  
pp. 03014
Author(s):  
Immanuel Wicaksono ◽  
Dharu Arseno ◽  
Yuyu Wahyu

Microstrip antenna as a supporter of wireless communication, which is the development of conventional antenna, has various advantages contained its predecessor, one of which has a patch that can be modified according to the wishes of the user. Microstrip antenna Log Periodic Dipole Array with Defected Ground Structure is one of the patch modification of antenna that allows antenna to work on wideband frequency 12-18 GHz (Ku-Band). Its use is intended for communication on satellites. In this research, will be designed and realized microstrip antenna with modification of Log Periodic Dipole Array patch working on frequency 12-18 GHz (Ku-band). The design will also use modifications to the ground structure with the use of slots using microstrip line feeding techniques. In this research, microstrip antenna design of Log Periodic Dipole Array with Defected Ground Structure works on 12-18 GHz (Ku-Band) frequency using slot using microstrip line feeding technique, which designed by using application of electromagnetic simulator (Integrated Software). The desired specifications are; gain ≥ 6 dBi, VSWR <2, as well as 6 GHz bandwidth, with unidirectional radiation pattern and linear polarization. Substrate materials used in design are Roger 5880 Duroid with a relative permittivity of 2.2 and a dielectric thickness of 1.57mm. Measurement results on the realization of this tool; return loss on each of the 12, 15, 18 GHz frequency markers of -25,457 dB, -12,939 dB, and -11.004 dB; with the value of VSWR 1.112, 1.593, 1.786. Impedance of 44,988 Ω, 34,129 Ω, 27,792 Ω. Gain respectively of 8.907 dB, 8.931 dB, 8.774 dB. Bandwidth 6 GHz. Unidirectional radiation pattern and elliptical polarization.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pravin Ratilal Prajapati

An application of defected ground structure (DGS) to reduce out-of-band harmonics has been presented. A compact, proximity feed fractal slotted microstrip antenna for wireless local area network (WLAN) applications has been designed. The proposed 3rd iteration reduces antenna size by 43% as compared to rectangular conventional antenna and by introducing H shape DGS, the size of an antenna is further reduced by 3%. The DGS introduces stop band characteristics and suppresses higher harmonics, which are out of the band generated by 1st, 2nd, and 3rd iterations. H shape DGS is etched below the 50 Ω feed line and transmission coefficient parameters (S21) are obtained by CST Microwave Studio software. The values of equivalent L and C model have been extracted using a trial version of the diplexer filter design software. The stop band characteristic of the equivalent LC model also has been simulated by the Advance Digital System software, which gives almost the same response as compared to the simulation of CST Microwave Studio V. 12. The proposed antenna operates from 2.4 GHz to 2.49 GHz, which covers WLAN band and has a gain of 4.46 dB at 2.45 GHz resonance frequency.


Sign in / Sign up

Export Citation Format

Share Document