2D Ultrasonic Reflection Tomography by Linear Array Transducer and Wave Reflector

Author(s):  
A. Sanpanich ◽  
K. Hamamoto ◽  
M. Sangworasil ◽  
C. Pintavirooj
Author(s):  
Guangzhi Dai ◽  
Zhiyong He ◽  
Hongwei Sun

Background: This study is carried out targeting the problem of slow response time and performance degradation of imaging system caused by large data of medical ultrasonic imaging. In view of the advantages of CS, it is applied to medical ultrasonic imaging to solve the above problems. Objective: Under the condition of satisfying the speed of ultrasound imaging, the quality of imaging can be further improved to provide the basis for accurate medical diagnosis. Methods: According to CS theory and the characteristics of the array ultrasonic imaging system, block compressed sensing ultrasonic imaging algorithm is proposed based on wavelet sparse representation. Results: Three kinds of observation matrices have been designed on the basis of the proposed algorithm, which can be selected to reduce the number of the linear array channels and the complexity of the ultrasonic imaging system to some extent. Conclusion: The corresponding simulation program is designed, and the result shows that this algorithm can greatly reduce the total data amount required by imaging and the number of data channels required for linear array transducer to receive data. The imaging effect has been greatly improved compared with that of the spatial frequency domain sparse algorithm.


2014 ◽  
Vol 24 (02) ◽  
pp. 196-200
Author(s):  
Morteza Tahmasebi ◽  
Hamdollah Zareizadeh ◽  
Azim Motamedfar

Abstract Background and Objective: Detection of radiolucent soft-tissue foreign bodies is a challenging problem, which is especially further complicated when retained foreign body is highly suggested by clinicians but radiography is negative. So, blind exploration is sometimes hazardous for patients. The purpose of this study was to determine the accuracy of ultrasonography (USG) in detecting radiolucent soft-tissue foreign bodies in the extremities. Materials and Methods: From November 2011 to January 2012, patients with clinically suspected radiolucent soft-tissue foreign body and negative radiography were evaluated by USG with a 12-MHz linear array transducer. The patients with positive clinical and USG examination were included in our study and underwent exploration or USG removal. Results: Fifty-one patients underwent foreign body removal under ultrasonography-guided or surgical exploration and 47 patients had foreign body (31, 12, 3, and 1 case had thorn, wood, glass, and plastic, respectively). Ultrasound was positive in 50 patients. USG falsely predicted the presence of foreign body in four cases and was falsely negative in one of the cases. Accuracy, sensitivity, and positive predictive value were determined as 90.2%, 97.9%, and 92%, respectively. Conclusions: The real-time high-frequency USG is a highly sensitive and accurate tool for detecting and removing radiolucent foreign bodies which are difficult to be visualized by routine radiography.


2012 ◽  
Author(s):  
Wenfeng Xia ◽  
Daniele Piras ◽  
Michelle Heijblom ◽  
Johan Van Hespen ◽  
Spiridon van Veldhoven ◽  
...  

2020 ◽  
Vol 245 (7) ◽  
pp. 597-605 ◽  
Author(s):  
Tri Vu ◽  
Mucong Li ◽  
Hannah Humayun ◽  
Yuan Zhou ◽  
Junjie Yao

With balanced spatial resolution, penetration depth, and imaging speed, photoacoustic computed tomography (PACT) is promising for clinical translation such as in breast cancer screening, functional brain imaging, and surgical guidance. Typically using a linear ultrasound (US) transducer array, PACT has great flexibility for hand-held applications. However, the linear US transducer array has a limited detection angle range and frequency bandwidth, resulting in limited-view and limited-bandwidth artifacts in the reconstructed PACT images. These artifacts significantly reduce the imaging quality. To address these issues, existing solutions often have to pay the price of system complexity, cost, and/or imaging speed. Here, we propose a deep-learning-based method that explores the Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to reduce the limited-view and limited-bandwidth artifacts in PACT. Compared with existing reconstruction and convolutional neural network approach, our model has shown improvement in imaging quality and resolution. Our results on simulation, phantom, and in vivo data have collectively demonstrated the feasibility of applying WGAN-GP to improve PACT’s image quality without any modification to the current imaging set-up. Impact statement This study has the following main impacts. It offers a promising solution for removing limited-view and limited-bandwidth artifact in PACT using a linear-array transducer and conventional image reconstruction, which have long hindered its clinical translation. Our solution shows unprecedented artifact removal ability for in vivo image, which may enable important applications such as imaging tumor angiogenesis and hypoxia. The study reports, for the first time, the use of an advanced deep-learning model based on stabilized generative adversarial network. Our results have demonstrated its superiority over other state-of-the-art deep-learning methods.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850015 ◽  
Author(s):  
Xiangwei Lin ◽  
Jaesok Yu ◽  
Naizhang Feng ◽  
Mingjian Sun

The synthetic aperture-based linear-array photoacoustic tomography (PAT) was proposed to address the limited-view shortcomings of the single aperture, but the detection field of view (FOV) determined by the aperture orientation effect was not fully considered yet, leading to the limited-view observation and image resolution degradation. Herein, the aperture orientation effect was proposed from the theoretical model and then it was verified via both the numerical simulation and phantom experiment. Different orientations were enumerated sequentially in the simulation to approximate the ideal full-view case for the optimal detection FOV, considering the detection pattern of the linear-array transducer. As a result, the corresponding optimal aperture orientation was 60[Formula: see text] if the synthetic aperture was seamlessly established by three single linear arrays, where the overlapped detection pattern was optimized from the individual linear-array transducer at the adjacent positions. Therefore, the limited-view artifacts were minimized and the image resolution was enhanced in this aperture orientation. This study showed that the aperture orientation had great influence on the optimal detection FOV in the synthetic aperture configuration, where the full-view imaging quality and enhanced image resolution could be achieved.


2015 ◽  
Vol 41 ◽  
pp. S631-S637 ◽  
Author(s):  
Hongwei Liu ◽  
Wei Ren ◽  
Jinyan Zhao ◽  
Huifeng Zhao ◽  
Xiaoqing Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document