A study of reinforcement learning with knowledge sharing -Applications to real mobile robots-

Author(s):  
K. Ito ◽  
Y. Imoto ◽  
H. Taguchi ◽  
A. Gofuku
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Song ◽  
Yibin Li ◽  
Xiaoli Wang ◽  
Xin Ma ◽  
Jiuhong Ruan

Reinforcement learning algorithm for multirobot will become very slow when the number of robots is increasing resulting in an exponential increase of state space. A sequentialQ-learning based on knowledge sharing is presented. The rule repository of robots behaviors is firstly initialized in the process of reinforcement learning. Mobile robots obtain present environmental state by sensors. Then the state will be matched to determine if the relevant behavior rule has been stored in the database. If the rule is present, an action will be chosen in accordance with the knowledge and the rules, and the matching weight will be refined. Otherwise the new rule will be appended to the database. The robots learn according to a given sequence and share the behavior database. We examine the algorithm by multirobot following-surrounding behavior, and find that the improved algorithm can effectively accelerate the convergence speed.


2012 ◽  
Vol 588-589 ◽  
pp. 1515-1518
Author(s):  
Yong Song ◽  
Bing Liu ◽  
Yi Bin Li

Reinforcement learning algorithm for multi-robot may will become very slow when the number of robots is increasing resulting in an exponential increase of state space. A sequential Q-learning base on knowledge sharing is presented. The rule repository of robots behaviors is firstly initialized in the process of reinforcement learning. Mobile robots obtain present environmental state by sensors. Then the state will be matched to determine if the relevant behavior rule has been stored in database. If the rule is present, an action will be chosen in accordance with the knowledge and the rules, and the matching weight will be refined. Otherwise the new rule will be joined in the database. The robots learn according to a given sequence and share the behavior database. We examine the algorithm by multi-robot following-surrounding behavior, and find that the improved algorithm can effectively accelerate the convergence speed.


2013 ◽  
Vol 14 (3) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Ma ◽  
Ya Xu ◽  
Guo-qiang Sun ◽  
Li-xia Deng ◽  
Yi-bin Li

Author(s):  
David L. Leottau ◽  
Aashish Vatsyayan ◽  
Javier Ruiz-del-Solar ◽  
Robert Babuška

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092167
Author(s):  
Hao Quan ◽  
Yansheng Li ◽  
Yi Zhang

At present, the application of mobile robots is more and more extensive, and the movement of mobile robots cannot be separated from effective navigation, especially path exploration. Aiming at navigation problems, this article proposes a method based on deep reinforcement learning and recurrent neural network, which combines double net and recurrent neural network modules with reinforcement learning ideas. At the same time, this article designed the corresponding parameter function to improve the performance of the model. In order to test the effectiveness of this method, based on the grid map model, this paper trains in a two-dimensional simulation environment, a three-dimensional TurtleBot simulation environment, and a physical robot environment, and obtains relevant data for peer-to-peer analysis. The experimental results show that the proposed algorithm has a good improvement in path finding efficiency and path length.


Sign in / Sign up

Export Citation Format

Share Document