Yuragi-based adaptive searching behavior in mobile robot: From bacterial chemotaxis to Levy walk

Author(s):  
S.G. Nurzaman ◽  
Y. Matsumoto ◽  
Y. Nakamura ◽  
S. Koizumi ◽  
H. Ishiguro
2011 ◽  
Vol 25 (16) ◽  
pp. 2019-2037 ◽  
Author(s):  
Surya G. Nurzaman ◽  
Yoshio Matsumoto ◽  
Yutaka Nakamura ◽  
Satoshi Koizumi ◽  
Hiroshi Ishiguro

Author(s):  
Haiyan Huo ◽  
Rui He ◽  
Rongjing Zhang ◽  
Junhua Yuan

E. coli cells swim in aqueous environment in a random walk of alternating runs and tumbles. The diffusion characteristics of this random walk remains unclear. Here, by tracking the swimming of wildtype cells in a 3d homogeneous environment, we found that their trajectories are super diffusive, consistent with Lévy walk behavior. For comparison, we tracked the swimming of mutant cells that lack the chemotaxis signaling noise (the steady-state fluctuation of the concentration of the chemotaxis response regulator CheY-P), and found that their trajectories are normal diffusive. Therefore, wildtype E. coli cells explore the environment by Lévy walk, which originates from the chemotaxis signaling noise. This Lévy walk pattern enhances their efficiency in environmental exploration. Importance E. coli cells explore the environment in a random walk of alternating runs and tumbles. By tracking the 3d trajectories of E. coli cells in aqueous environment, we find that their trajectories are super diffusive, with a power-law shape for the distribution of run lengths, which is characteristics of Lévy walk. We further show that this Lévy walk behavior is due to the random fluctuation of the output level of the bacterial chemotaxis pathway, and it enhances the efficiency of the bacteria in exploring the environment.


Author(s):  
Ginestra Bianconi

This chapter addresses diffusion, random walks and congestion in multilayer networks. Here it is revealed that diffusion on a multilayer network can be significantly speed up with respect to diffusion taking place on its single layers taken in isolation, and that sometimes it is possible also to observe super-diffusion. Diffusion is here characterized on multilayer network structures by studying the spectral properties of the supra-Laplacian and the dependence on the diffusion constant among different layers. Random walks and its variations including the Lévy Walk are shown to reflect the improved navigability of multilayer networks with more layers. These results are here compared with the results of traffic on multilayer networks that, on the contrary, point out that increasing the number of layers could be detrimental and could lead to congestion.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1140
Author(s):  
Daiki Andoh ◽  
Yukio-Pegio Gunji

The Lévy walk is a pattern that is often seen in the movement of living organisms; it has both ballistic and random features and is a behavior that has been recognized in various animals and unicellular organisms, such as amoebae, in recent years. We proposed an amoeba locomotion model that implements Bayesian and inverse Bayesian inference as a Lévy walk algorithm that balances exploration and exploitation, and through a comparison with general random walks, we confirmed its effectiveness. While Bayesian inference is expressed only by P(h) = P(h|d), we introduce inverse Bayesian inference expressed as P(d|h) = P(d) in a symmetry fashion. That symmetry contributes to balancing contracting and expanding the probability space. Additionally, the conditions of various environments were set, and experimental results were obtained that corresponded to changes in gait patterns with respect to changes in the conditions of actual metastatic cancer cells.


2019 ◽  
Vol 99 (1) ◽  
Author(s):  
Yao Chen ◽  
Xudong Wang ◽  
Weihua Deng

2013 ◽  
Vol 111 (2) ◽  
pp. 728-733 ◽  
Author(s):  
D. A. Raichlen ◽  
B. M. Wood ◽  
A. D. Gordon ◽  
A. Z. P. Mabulla ◽  
F. W. Marlowe ◽  
...  

2020 ◽  
Author(s):  
Venkat Abhignan ◽  
Sinduja Rajadurai

AbstractWe simulate stable distributions to study the ideal movement pattern for the spread of a virus using autonomous carrier. We observe Lévy walks to be the most ideal way to spread and further study how the parameters in Lévy distribution affects the spread.


Sign in / Sign up

Export Citation Format

Share Document