Application of GA to design LQR controller for an Inverted Pendulum System

Author(s):  
C. Wongsathan ◽  
C. Sirima
2021 ◽  
Vol 1 (1) ◽  
pp. 84-89
Author(s):  
Ümit Önen ◽  
Abdullah Çakan

In this study, modeling and LQR control of a reaction wheel inverted pendulum system is described. The reaction wheel inverted pendulum model is created by using a 3D CAD platform and exported to Simscape Multibody. The multibody model is linearized to derive a state-space representation. A LQR (Linear-quadratic regulator) controller is designed and applied for balance control of the pendulum. The results show that deriving a state-space representation from multibody is an easy and effective way to model dynamic systems and balance control of the reaction wheel inverted pendulum is successfully achieved by LQR controller. Results are given in the form of graphics.


2019 ◽  
Vol 1 (28) ◽  
pp. 50-55
Author(s):  
Tan Thanh Nguyen

In this article, the author used the matlab software to simulate and then compared the results between the classical LQR (Linear Quadratic Regulator) controller and another method to adjust the matrix parameters toward optimization of the LQR controller. It is the GA (Genetic Algorithm) method to optimize the matrix of the LQR controller, and the results have  been verified on the nonlinear pendulum model. The Genetic Algorithm is a modern control algorithm, which is widely applied in research and practice. The main objective of this article is to use the GA algorithm in order to optimize the matrix parameters of LQR controller, whichcontrolled the position and angle of the nonlinear inverted pendulum at the stable balance point. The matlab-based simulating results showed that  the system has operated properly to the requirements and the output response has reached an equilibrium position of about 2.5 seconds.


2014 ◽  
Vol 36 ◽  
pp. 262-268 ◽  
Author(s):  
Ling Wang ◽  
Haoqi Ni ◽  
Weifeng Zhou ◽  
Panos M. Pardalos ◽  
Jiating Fang ◽  
...  

2017 ◽  
Vol 2 (9) ◽  
pp. 1-5
Author(s):  
Ghassan A. Sultan ◽  
Ziyad K. Farej

Double inverted pendulum (DIP) is a nonlinear, multivariable and unstable system. The inverted pendulum which continually moves toward an uncontrolled state represents a challenging control problem. The problem is to balance the pendulum vertically upward on a mobile platform that can move in only two directions (left or right) when it is offset from zero stat. The aim is to determine the control strategy that deliver better performance with respect to pendulum's angles and cart's position. A Linear-Quadratic-Regulator (LQR) technique for controlling the linearized system of double inverted pendulum model is presented. Simulation studies conducted in MATLAB environment show that the LQR controller are capable of controlling the multi output double inverted pendulum system. Also better performance results are obtained for controlling heavy driven part DIP system.


2014 ◽  
Vol 971-973 ◽  
pp. 1272-1275 ◽  
Author(s):  
Huai De Yang

The inverted pendulum system is characterized as a typical nonlinear, fast multi-variable, essentially unstable system. It is difficult to control because of its instability .In order to improve balance control, the mathematical model of the single inverted pendulum is established, a LQR controller is designed which is based on improved artificial bee colony. Experiments show that the improved algorithm has better performance than standard artificial bee colony algorithm on convergence and rate balance control to meet the requirements of the single inverted pendulum.


2013 ◽  
Vol 391 ◽  
pp. 163-167 ◽  
Author(s):  
M. Fajar ◽  
S.S. Douglas ◽  
J.B. Gomm

This paper describes how to simulate the spherical inverted pendulum, a dynamics of multibody system, with SimMechanics. The control strategy used is based on the LQR feedback method for the stabilisation of the spherical inverted pendulum system. Simulation study has been done in Simulink environment shows that LQR controller is capable to control multi input and multi output of spherical inverted pendulum system successfully. The result shows that LQR control strategy gives satisfactory response that is presented in time domain with the details analysis. The use of SimMechanics for simulation of spherical inverted pendulum has some advantages i.e. not need to derive equations of motion, available visualisation tools, fast and easy design


2013 ◽  
Vol 631-632 ◽  
pp. 1342-1347
Author(s):  
Xu Cao ◽  
Nian Feng Li ◽  
Hua Xun Zhang

For the high order, unstable, multivariable, nonlinear and strong coupling characteristics, robust stability is an important indicator of inverted pendulum system. In this paper an LQR robust controller of inverter pendulum system is designed. The simulation and the experimental results showed that the stability of the robust LQR controller is better than the original LQR controller. When the system departure counterpoise for all kinds of reasons, it get back equilibrium state without depleting any energy, and approach state of equilibrium of all state component.


Sign in / Sign up

Export Citation Format

Share Document