Design and Performance of PD and LQR Controller for Double Inverted Pendulum System

2017 ◽  
Vol 2 (9) ◽  
pp. 1-5
Author(s):  
Ghassan A. Sultan ◽  
Ziyad K. Farej

Double inverted pendulum (DIP) is a nonlinear, multivariable and unstable system. The inverted pendulum which continually moves toward an uncontrolled state represents a challenging control problem. The problem is to balance the pendulum vertically upward on a mobile platform that can move in only two directions (left or right) when it is offset from zero stat. The aim is to determine the control strategy that deliver better performance with respect to pendulum's angles and cart's position. A Linear-Quadratic-Regulator (LQR) technique for controlling the linearized system of double inverted pendulum model is presented. Simulation studies conducted in MATLAB environment show that the LQR controller are capable of controlling the multi output double inverted pendulum system. Also better performance results are obtained for controlling heavy driven part DIP system.


Author(s):  
Tuna Balkan ◽  
Mehmet Emin Ari

Abstract An inverted pendulum system has been designed and constructed as a physical model of inherently unstable mechanical systems. The vertical upright position of a pendulum is controlled by changing the horizontal position of a cart to which the pendulum is hinged. The stability of the system has been investigated when a fuzzy controller is used to produce the control signal, while making a single measurement. It has been shown that by using simple fuzzy rules to allow real time computation with a single angular position measurement, the system can not be made absolutely stable. However, the stability and performance of the system have been considerably improved by shrinking the membership functions of angular position, computed angular velocity and control signal when inverted pendulum is very close to the vertical upright position.


2021 ◽  
Vol 1 (1) ◽  
pp. 84-89
Author(s):  
Ümit Önen ◽  
Abdullah Çakan

In this study, modeling and LQR control of a reaction wheel inverted pendulum system is described. The reaction wheel inverted pendulum model is created by using a 3D CAD platform and exported to Simscape Multibody. The multibody model is linearized to derive a state-space representation. A LQR (Linear-quadratic regulator) controller is designed and applied for balance control of the pendulum. The results show that deriving a state-space representation from multibody is an easy and effective way to model dynamic systems and balance control of the reaction wheel inverted pendulum is successfully achieved by LQR controller. Results are given in the form of graphics.


2019 ◽  
Vol 1 (28) ◽  
pp. 50-55
Author(s):  
Tan Thanh Nguyen

In this article, the author used the matlab software to simulate and then compared the results between the classical LQR (Linear Quadratic Regulator) controller and another method to adjust the matrix parameters toward optimization of the LQR controller. It is the GA (Genetic Algorithm) method to optimize the matrix of the LQR controller, and the results have  been verified on the nonlinear pendulum model. The Genetic Algorithm is a modern control algorithm, which is widely applied in research and practice. The main objective of this article is to use the GA algorithm in order to optimize the matrix parameters of LQR controller, whichcontrolled the position and angle of the nonlinear inverted pendulum at the stable balance point. The matlab-based simulating results showed that  the system has operated properly to the requirements and the output response has reached an equilibrium position of about 2.5 seconds.


2014 ◽  
Vol 36 ◽  
pp. 262-268 ◽  
Author(s):  
Ling Wang ◽  
Haoqi Ni ◽  
Weifeng Zhou ◽  
Panos M. Pardalos ◽  
Jiating Fang ◽  
...  

2014 ◽  
Vol 971-973 ◽  
pp. 1272-1275 ◽  
Author(s):  
Huai De Yang

The inverted pendulum system is characterized as a typical nonlinear, fast multi-variable, essentially unstable system. It is difficult to control because of its instability .In order to improve balance control, the mathematical model of the single inverted pendulum is established, a LQR controller is designed which is based on improved artificial bee colony. Experiments show that the improved algorithm has better performance than standard artificial bee colony algorithm on convergence and rate balance control to meet the requirements of the single inverted pendulum.


2018 ◽  
Vol 24 (16) ◽  
pp. 3515-3524 ◽  
Author(s):  
M Ashok Kumar ◽  
S Kanthalakshmi

The objective of this paper is to design an [Formula: see text] controller for an inverted pendulum system, synthesized using the [Formula: see text] loop shaping technique. In the [Formula: see text] loop shaping technique, a linear plant model is augmented with certain weight functions, such as the sensitivity weight function and complementary sensitivity weight function, so that the closed loop transfer function of the plant will have the desired performance. In this work, the [Formula: see text] controller is synthesized and the analysis on robustness and performance of the system is done by taking the singular value response and robustness indicator plots.


Sign in / Sign up

Export Citation Format

Share Document