Integration of Visual Information and Robot Offline Programming System for Improving Automatic Deburring Process

Author(s):  
Zengliang Lai ◽  
Rentao Xiong ◽  
Hongmin Wu ◽  
Yisheng Guan
2012 ◽  
Vol 184-185 ◽  
pp. 1623-1627 ◽  
Author(s):  
Huan Ming Chen ◽  
Zhou Ping Liu

To raise the programming efficiency of arc welding robots, the offline programming system was developed for a Motoman-UP20 robot with redundant degrees of freedom in VC++ integration environment. The system consists of kinematics analysis, motion simulation, welding trajectory plan, welding parameters plan and job file generating module. It can plan the motion path and posture of welding gun for saddle-shape seams, and display the workpiece on the interface synchronically. Job instructions can be made step by step, or generated automatically. Kinematics simulation module and communication module are integrated together, and job files can be exchanged between PC and robot controller via Ethernet to realize remote control.


Author(s):  
João Pedro Carvalho de Souza ◽  
André Luiz Castro ◽  
Luís F. Rocha ◽  
Manuel F. Silva

Purpose This paper aims to propose a translation library capable of generating robots proprietary code after their offline programming has been performed in a software application, named AdaptPack Studio, running over a robot simulation and offline programming software package. Design/methodology/approach The translation library, named AdaptPack Studio Translator, is capable to generate proprietary code for the Asea Brown Boveri, FANUC, Keller und Knappich Augsburg and Yaskawa Motoman robot brands, after their offline programming has been performed in the AdaptPack Studio application. Findings Simulation and real tests were performed showing an improvement in the creation, operation, modularity and flexibility of new robotic palletizing systems. In particular, it was verified that the time needed to perform these tasks significantly decreased. Practical implications The design and setup of robotics palletizing systems are facilitated by an intuitive offline programming system and by a simple export command to the real robot, independent of its brand. In this way, industrial solutions can be developed faster, in this way, making companies more competitive. Originality/value The effort to build a robotic palletizing system is reduced by an intuitive offline programming system (AdaptPack Studio) and the capability to export command to the real robot using the AdaptPack Studio Translator. As a result, companies have an increase in competitiveness with a fast design framework. Furthermore, and to the best of the author’s knowledge, there is also no scientific publication formalizing and describing how to build the translators for industrial robot simulation and offline programming software packages, being this a pioneer publication in this area.


2011 ◽  
Vol 301-303 ◽  
pp. 127-132
Author(s):  
Xin Pu ◽  
Liang Yu Li ◽  
Tian Qi Wang ◽  
Jia Hui Li

In connection with the model of the turbine blade to be maintained, the path planning technology for the welding robot is researched. By using Solidworks, the model of the turbine blade is layered and dispersed. According to the analysis of the main function of welding robot’s offline programming system, path planning and torch pose planning are designed for blades maintenance. According to the characteristics of simulation data, the result shows this program is valuable for turbine blades maintenance based on welding robot.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4008 ◽  
Author(s):  
Amit Kumar Bedaka ◽  
Alaa M. Mahmoud ◽  
Shao-Chun Lee ◽  
Chyi-Yeu Lin

Automatic optical inspection (AOI) is a control process for precisely evaluating the completeness and quality of manufactured products with the help of visual information. Automatic optical inspection systems include cameras, light sources, and objects; AOI requires expert operators and time-consuming setup processes. In this study, a novel autonomous industrial robot-guided inspection system was hypothesized and developed to expedite and ease inspection process development. The developed platform is an intuitive and interactive system that does not require a physical object to test or an industrial robot; this allows nonexpert operators to perform object inspection planning by only using scanned data. The proposed system comprises an offline programming (OLP) platform and three-dimensional/two-dimensional (3D/2D) vision module. A robot program generated from the OLP platform is mapped to an industrial manipulator to scan a 3D point-cloud model of an object by using a laser triangulation sensor. After a reconstructed 3D model is aligned with a computer-aided design model on a common coordinate system, the OLP platform allows users to efficiently fine-tune the required inspection positions on the basis of the rendered images. The arranged inspection positions can be directed to an industrial manipulator on a production line to capture real images by using the corresponding 2D camera/lens setup for AOI tasks. This innovative system can be implemented in smart factories, which are easily manageable from multiple locations. Workers can save scanned data when new inspection positions are included based on cloud data. The present system provides a new direction to cloud-based manufacturing industries and maximizes the flexibility and efficiency of the AOI setup process to increase productivity.


Sign in / Sign up

Export Citation Format

Share Document