Path Planning of the Robot for Aero-Engine Turbine Blades Maintenance

2011 ◽  
Vol 301-303 ◽  
pp. 127-132
Author(s):  
Xin Pu ◽  
Liang Yu Li ◽  
Tian Qi Wang ◽  
Jia Hui Li

In connection with the model of the turbine blade to be maintained, the path planning technology for the welding robot is researched. By using Solidworks, the model of the turbine blade is layered and dispersed. According to the analysis of the main function of welding robot’s offline programming system, path planning and torch pose planning are designed for blades maintenance. According to the characteristics of simulation data, the result shows this program is valuable for turbine blades maintenance based on welding robot.

2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989696
Author(s):  
Shanxiang Fang ◽  
Qinjian Zhang ◽  
Weidong Cheng ◽  
Jiwu Wang ◽  
Chang Liu ◽  
...  

In order to realize the automatic strengthening for turbine blades, a path planning method for robotic ultrasonic surface strengthening is proposed. A constitutive model of nonlinear isotropic strengthening–kinematic hardening is analyzed to establish the dynamic response model of ultrasonic surface strengthening on the turbine blade. According to the dynamic response model, the impact depth of the ultrasonic working head was obtained. Then, a path planning method of robotic ultrasonic surface strengthening for turbine blades is proposed on the basis of impact depth of working head, and it can improve both the uniformity of path distribution and contour accuracy. It not only ensures the processing accuracy but also meets the uniformity requirement of coverage. This path planning method provides a new surface strengthening technology for turbine blades.


2019 ◽  
Vol 9 (19) ◽  
pp. 4181 ◽  
Author(s):  
Shangwen He ◽  
Wenzhen Jia ◽  
Zhaorui Yang ◽  
Bingbing He ◽  
Jun Zhao

High-cycle fatigue (HCF) failure of the turbine blades of aero-engines caused by high vibrational stresses is one of the main causes of aero-engine incidents [...]


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 632 ◽  
Author(s):  
Qingyan Xu ◽  
Cong Yang ◽  
Hang Zhang ◽  
Xuewei Yan ◽  
Ning Tang ◽  
...  

Ni-based superalloy turbine blades have become indispensable structural parts in modern gas engines. An understanding of the solidification behavior and microstructure formation in directional solidified turbine blades is necessary for improving their high-temperature performance. The multiscale simulation model was developed to simulate the directional solidification process of superalloy turbine blades. The 3D cellular automaton-finite difference (CA-FD) method was used to calculate heat transfer and grain growth on the macroscopic scale, while the phase-field method was developed to simulate dendrite growth on the microscopic scale. Firstly, the evolution of temperature field of an aero-engine blade and a large industrial gas turbine blade was studied under high-rate solidification (HRS) and liquid-metal cooling (LMC) solidification processes. The varying withdrawal velocity was applied to change the curved mushy zone to a flat shape. Secondly, the grain growth in the aero-engine blade was simulated, and the grain structures in the starter block part and the spiral selector part in the HRS process were compared with those in the LMC process. The simulated grain structures were generally in agreement with experimental results. Finally, the dendrite growth in the typical HRS and LMC solidification process was investigated and the simulation results were compared with the experimental results in terms of dendrite morphology and primary dendritic spacing.


2021 ◽  
Vol 11 (9) ◽  
pp. 3913
Author(s):  
Kaifeng Zheng ◽  
Jinguang Lü ◽  
Yingze Zhao ◽  
Jin Tao ◽  
Yuxin Qin ◽  
...  

The turbine blade is a key component in an aeroengine. Currently, measuring the turbine blade radiation temperature always requires obtaining the emissivity of the target surface in advance. However, changes in the emissivity and the reflected ambient radiation cause large errors in measurement results. In this paper, a three-wavelength radiation temperature measurement method was developed, without known emissivity, for reflection correction. Firstly, a three-dimensional dynamic reflection model of the turbine blade was established to describe the ambient radiation of the target blade based on the real surface of the engine turbine blade. Secondly, based on the reflection correction model, a three-wavelength radiation temperature measurement algorithm, independent of surface emissivity, was proposed to improve the measurement accuracy of the turbine blade radiation temperature in the engine. Finally, an experimental platform was built to verify the temperature measurement method. Compared with three conventional colorimetric methods, this method achieved an improved performance on blade temperature measurement, demonstrating a decline in the maximum error from 6.09% to 2.13% and in the average error from 2.82% to 1.20%. The proposed method would benefit the accuracy in the high-temperature measurement of turbine blades.


1997 ◽  
Vol 119 (2) ◽  
pp. 292-301 ◽  
Author(s):  
K. Funazaki ◽  
M. Yokota ◽  
S. Yamawaki

Detailed studies are conducted on film effectiveness of discrete cooling holes around the leading edge of a blunt body that is subjected to periodically incoming wakes as well as free-stream turbulence with various levels of intensity. The cooling holes have a configuration similar to that of typical turbine blades except for the spanwise inclination angle. Secondary air is heated so that the temperature difference between the mainstream and secondary air is about 20 K. In this case, the air density ratio of the mainstream and secondary air becomes less than unity, therefore the flow condition encountered in an actual aero-engine cannot be simulated in terms of the density ratio. A spoke-wheel type wake generator is used in this study. In addition, three types of turbulence grids are used to elevate the free-stream turbulence intensity. We adopt three blowing ratios of the secondary air to the mainstream. For each of the blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples situated inside the model. The temperature is visualized using liquid crystals in order to obtain qualitative information of film effectiveness distribution.


Author(s):  
K. Funazaki ◽  
M. Yokota ◽  
S. Yamawaki

Detailed studies are conducted on film effectiveness of discrete cooling holes around the leading edge of a blunt body that is subjected to periodically incoming wakes as well as free-stream turbulence with various levels of intensity. The cooling holes have a configuration similar to that of typical turbine blades except for the spanwise inclination angle. Secondary air is heated so that the temperature difference between the mainstream and secondary air is about 20K. In this case, air density ratio of the mainstream and secondary air becomes less than unity, therefore the flow condition encountered in an actual aero-engine can not be simulated in terms of the density ratio. A spoke-wheel type wake generator is used in this study. In addition, three types of turbulence grids are used to elevate the free-stream turbulence intensity. We adopt three blowing ratios of the secondary air to the mainstream. For each of the blowing ratios, wall temperature around the surface of the test model are measured by thermocouples situated inside the model. The temperature is visualized using liquid crystals in order to obtain qualitative information of film effectiveness distribution.


2012 ◽  
Vol 184-185 ◽  
pp. 1623-1627 ◽  
Author(s):  
Huan Ming Chen ◽  
Zhou Ping Liu

To raise the programming efficiency of arc welding robots, the offline programming system was developed for a Motoman-UP20 robot with redundant degrees of freedom in VC++ integration environment. The system consists of kinematics analysis, motion simulation, welding trajectory plan, welding parameters plan and job file generating module. It can plan the motion path and posture of welding gun for saddle-shape seams, and display the workpiece on the interface synchronically. Job instructions can be made step by step, or generated automatically. Kinematics simulation module and communication module are integrated together, and job files can be exchanged between PC and robot controller via Ethernet to realize remote control.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 237
Author(s):  
Yue Liu ◽  
Zhanqiang Liu ◽  
Wentong Cai ◽  
Yukui Cai ◽  
Bing Wang ◽  
...  

Aero-engine blades are manufactured by electroforming process with electrodes. The blade electrode is usually machined with five-axis micromilling to get required profile roughness. Tool path planning parameters, such as cutting step and tool tilt angle, have a significant effect on the profile roughness of the micro-fillet of blade electrode. In this paper, the scallop height model of blade electrode micro-fillet processed by ball-end milling cutter was proposed. Effects of cutting step and tool tilt angle the machined micro-fillet profile roughness were predicted with the proposed scallop height model. The cutting step and tool tilt angle were then optimised to ensure the contour precision of the micro-fillet shape requirement. Finally, the tool path planning was generated and the machining strategy was validated through milling experiments. It was also found that the profile roughness was deteriorated due to size effect when the cutting step decreased to a certain value.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3315
Author(s):  
Liuxi Cai ◽  
Yao He ◽  
Shunsen Wang ◽  
Yun Li ◽  
Fang Li

Based on the establishment of the original and improved models of the turbine blade, a thermal–fluid–solid coupling method and a finite element method were employed to analyze the internal and external flow, temperature, and thermal stress of the turbine blade. The uneven temperature field, the thermal stress distribution characteristics of the composite cooling turbine blade under the service conditions, and the effect of the thickness of the thermal barrier coating (TBC) on the temperature and thermal stress distributions were obtained. The results show that the method proposed in this paper can better predict the ablation and thermal stress damage of turbine blades. The thermal stress of the blade is closely related to the temperature gradient and local geometric structure of the blade. The inlet area of the pressure side-platform of the blade, the large curvature region of the pressure tip of the blade, and the rounding between the blade body and the platform on the back of the blade are easily damaged by thermal stress. Cooling structure optimization and thicker TBC thickness can effectively reduce the high temperature and temperature gradient on the surface and inside of the turbine blade, thereby reducing the local high thermal stress.


Author(s):  
Mahesh M. Bhat ◽  
V. Ramamurti ◽  
C. Sujatha

Abstract Steam turbine blade is a very complex structure. It has geometric complexities like variation of twist, taper, width and thickness along its length. Most of the time these variations are not uniform. Apart from these geometric complexities, the blades are coupled by means of lacing wire, lacing rod or shroud. Blades are attached to a flexible disc which contributes to the dynamic behavior of the blade. Root fixity also plays an important role in this behavior. There is a considerable variation in the frequencies of blades of newly assembled turbine and frequencies after some hours of running. Again because of manufacturing tolerances there can be some variation in the blade to blade frequencies. Determination of natural frequencies of the blade is therefore a very critical job. Problems associated with typical industrial turbine bladed discs of a 235 MW steam turbine are highlighted in this paper.


Sign in / Sign up

Export Citation Format

Share Document