2-D finite-element models of tactile sensors

Author(s):  
S.L. Ricker ◽  
R.E. Ellis
2007 ◽  
Vol 1 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Saeed Sokhanvar ◽  
Mohammadreza Ramezanifard ◽  
Javad Dargahi ◽  
Muthukumaran Packirisamy

Minimally invasive sugery (MIS) has increasingly been used in different surgical routines despite having significant shortcomings such as a lack of tactile feedback. Restoring this missing tactile information, particularly the information gained through tissue palpation, would be a significant enhancement to MIS capabilities. Tissue palpation is particularly important and commonly used in locating embedded lumps. The present study is inspired by this major limitation of the MIS procedure and is aimed at developing a system to reconstruct the lost palpation capability of surgeons in an effective way. By collecting necessary information on the size and location of hidden features using MIS graspers equipped with tactile sensors, the information can be processed and graphically rendered to the surgeon. Therefore, using the proposed system, surgeons can identify the presence or absence, location, and approximate size of hidden lumps simply by grasping the target organ with a smart endoscopic grasper. The results of the conducted experiments on the prototyped MIS graspers represented by graphical images are compared with those of the finite element models.


1988 ◽  
Vol 16 (1) ◽  
pp. 18-43 ◽  
Author(s):  
J. T. Oden ◽  
T. L. Lin ◽  
J. M. Bass

Abstract Mathematical models of finite deformation of a rolling viscoelastic cylinder in contact with a rough foundation are developed in preparation for a general model for rolling tires. Variational principles and finite element models are derived. Numerical results are obtained for a variety of cases, including that of a pure elastic rubber cylinder, a viscoelastic cylinder, the development of standing waves, and frictional effects.


1997 ◽  
Author(s):  
Francois Hemez ◽  
Emmanuel Pagnacco ◽  
Francois Hemez ◽  
Emmanuel Pagnacco

2021 ◽  
pp. 107754632199759
Author(s):  
Jianchun Yao ◽  
Mohammad Fard ◽  
John L Davy ◽  
Kazuhito Kato

Industry is moving towards more data-oriented design and analyses to solve complex analytical problems. Solving complex and large finite element models is still challenging and requires high computational time and resources. Here, a modular method is presented to predict the transmission of vehicle body vibration to the occupants’ body by combining the numerical transfer matrices of the subsystems. The transfer matrices of the subsystems are presented in the form of data which is sourced from either physical tests or finite element models. The structural dynamics of the vehicle body is represented using a transfer matrix at each of the seat mounting points in three triaxial (X–Y–Z) orientations. The proposed method provides an accurate estimation of the transmission of the vehicle body vibration to the seat frame and the seated occupant. This method allows the combination of conventional finite element analytical model data and the experimental data of subsystems to accurately predict the dynamic performance of the complex structure. The numerical transfer matrices can also be the subject of machine learning for various applications such as for the prediction of the vibration discomfort of the occupant with different seat and foam designs and with different physical characteristics of the occupant body.


Sign in / Sign up

Export Citation Format

Share Document