The application of discrete-time adaptive impedance control to rehabilitation robot manipulators

Author(s):  
Shoupu Chen ◽  
W. Harwin ◽  
T. Rahman
2018 ◽  
Vol 28 (2) ◽  
pp. 363-374 ◽  
Author(s):  
Isela Bonilla ◽  
Marco Mendoza ◽  
Daniel U. Campos-Delgado ◽  
Diana E. Hernández-Alfaro

Abstract The main impedance control schemes in the task space require accurate knowledge of the kinematics and dynamics of the robotic system to be controlled. In order to eliminate this dependence and preserve the structure of this kind of algorithms, this paper presents an adaptive impedance control approach to robot manipulators with kinematic and dynamic parametric uncertainty. The proposed scheme is an inverse dynamics control law that leads to the closed-loop system having a PD structure whose equilibrium point converges asymptotically to zero according to the formal stability analysis in the Lyapunov sense. In addition, the general structure of the scheme is composed of continuous functions and includes the modeling of most of the physical phenomena present in the dynamics of the robotic system. The main feature of this control scheme is that it allows precise path tracking in both free and constrained spaces (if the robot is in contact with the environment). The proper behavior of the closed-loop system is validated using a two degree-of-freedom robotic arm. For this benchmark good results were obtained and the control objective was achieved despite neglecting non modeled dynamics, such as viscous and Coulomb friction.


1993 ◽  
Vol 10 (2) ◽  
pp. 217-248 ◽  
Author(s):  
R. Colbaugh ◽  
H. Seraji ◽  
K. Glass

Author(s):  
Prashant K. Jamwal ◽  
Shahid Hussain ◽  
Mergen H. Ghayesh ◽  
Svetlana V. Rogozina

Robots are being increasingly used by physical therapists to carry out rehabilitation treatments owing to their ability of providing repetitive, controlled, and autonomous training sessions. Enhanced treatment outcomes can be achieved by encouraging patients' active participation besides robotic assistance. Advanced control strategies are required to be designed and implemented for the rehabilitation robots in order to persuade patients to contribute actively during the treatments. In this paper, an adaptive impedance control approach is developed and implemented on a parallel ankle rehabilitation robot. The ankle robot was designed based on a parallel mechanism and actuated using four pneumatic muscle actuators (PMAs) to provide three rotational degrees-of-freedom (DOFs) to the ankle joint. The proposed controller adapts the parallel robot's impedance according to the patients' active participation to provide customized robotic assistance. In order to evaluate performance of the proposed controller, experiments were conducted with stroke patients. It is demonstrated from the experimental results that the robotic assistance decreases as a result of patients' active participation. Similarly, increased robotics assistance is recorded in response to decrease in patient's participation in the rehabilitation process. This work will aid in the further development of customized robot-assisted physical therapy of ankle joint impairment.


Sign in / Sign up

Export Citation Format

Share Document