A stochastic Petri net synthesis method with known lower bound of the second dominant eigenvalue

Author(s):  
Jongwook Kim ◽  
A.A. Desrochers
2014 ◽  
Vol 24 (5) ◽  
Author(s):  
CHUANLIANG XIA

We provide motivation for and then study the synthesis of Petri nets. Synthesis can avoid the state exploration problem by guaranteeing correctness for the Petri net. We propose conditions to be imposed on a synthesis shared pb-type subnet for systems specified in Petri nets that ensure the preservation of the liveness and boundedness structural properties. Specifically, we propose a group of sufficient conditions, or both sufficient and necessary conditions, for liveness preservation and boundedness preservation. Possible applications of this synthesis method are illustrated through an example in the form of a flexible manufacturing system. These results are useful for studying the static and dynamic properties of Petri nets for analysing the properties of large complex systems.


2008 ◽  
Vol 44-46 ◽  
pp. 537-544
Author(s):  
Shi Yi Bao ◽  
Jian Xin Zhu ◽  
Li J. Wang ◽  
Ning Jiang ◽  
Zeng Liang Gao

The quantitative analysis of “domino” effects is one of the main aspects of hazard assessment in chemical industrial park. This paper demonstrates the application of heterogeneous stochastic Petri net modeling techniques to the quantitative assessment of the probabilities of domino effects of major accidents in chemical industrial park. First, five events are included in the domino effect models of major accidents: pool fire, explosion, boiling liquid expanding vapour explosion (BLEVE) giving rise to a fragment, jet fire and delayed explosion of a vapour cloud. Then, the domino effect models are converted into Generalized Stochastic Petri net (GSPN) in which the probability of the domino effect is calculated automatically. The Stochastic Petri nets’ models, which are state-space based ones, increase the modeling flexibility but create the state-space explosion problems. Finally, in order to alleviate the state-space explosion problems of GSPN models, this paper employs Stochastic Wellformed Net (SWN), a particular class of High-Level (colored) SPN. To conduct a case study on a chemical industrial park, the probability of domino effects of major accidents is calculated by using the GSPN model and SWN model in this paper.


2011 ◽  
Vol 255-260 ◽  
pp. 1989-1993
Author(s):  
Chuan Liang Xia ◽  
Zhen Dong Liu ◽  
Peng Sun

Petri net synthesis can avoid the state exploration problem by guaranteeing the correctness in the Petri net while incrementally expanding the net. This paper proposes the conditions imposed on a synthesis shared a kind of subnet under which the following structural properties will be preserved: repetitiveness, consistency, structural boundedness, conservativeness, structural liveness, P-invariant and T-invariant.


2021 ◽  
Vol 238 ◽  
pp. 109732
Author(s):  
Jichuan Kang ◽  
Xinyuan Geng ◽  
Xu Bai ◽  
Yan Dong

Author(s):  
Chuan Wang ◽  
Jun Gou ◽  
Yingcheng Tian ◽  
Hao Jin ◽  
Chao Yu ◽  
...  

In this paper, a safety evaluation method of subsea High Integrity Pressure Protection System (HIPPS) based on a generalized stochastic Petri net model is proposed. Different test methods were used to detect different types of failures and to analyze the reliability of HIPPS components under the influence of common cause failures and incomplete repair. The reliability curve of a diagnostic system consisting of a transmitter system and a logic system under the influence of uncertainty over time is analyzed. The safety of HIPPS with diverse test methods were quantitatively analyzed. The results show a significant improvement in the performance of the system after testing and maintenance. Both partial-stroke testing and increased partial-stroke test coverage can be used to increase the HIPPS performance compared to traditional methods. The analysis of the Partial stroke test (PST) strategy can afford a academic basis for the selection of PST frequency and Functional test (FT) interval in practical engineering.


Sign in / Sign up

Export Citation Format

Share Document