Forward position problem of two PUMA-type robots manipulating a planar four-bar linkage payload

Author(s):  
G.R. Pennock ◽  
K.G. Mattson
1993 ◽  
Vol 115 (2) ◽  
pp. 332-336 ◽  
Author(s):  
J. M. McCarthy

In planar four-position kinematics, the centers of circles containing four positions of a point in a moving rigid body form the center point curve. This curve can be parameterized by analyzing a “compatibility linkage” obtained from a complex number formulation of the four-position problem. In this paper, we present another derivation of the center point curve using a special form of dual quaternions and the fact that it is identical to the pole curve. The defining properties of the pole curve lead to a parameterization by kinematic analysis of the opposite pole quadrilateral as a four-bar linkage. Thus the opposite pole quadrilateral becomes the compatibility linkage. This derivation generalizes to provide parameterizations for the center point cone of spherical kinematics and the central axis congruence of spatial kinematic theory.


Author(s):  
Shrinath Deshpande ◽  
Anurag Purwar

The past forty years of research in mechanism synthesis has witnessed an unprecedented volume of work in formulating and solving planar four-bar linkage synthesis problems. However, finding practical and useful mechanisms for the motion synthesis problem has proven to be elusive, as a large majority of mechanisms turn out to be defective with respect to their assembly modes. Most methods formulate the problem as a discrete precision position problem, which inherently ignores the continuity information in the input, resulting in linkages with branch-, circuit- and order-defects. In this paper, we bring together diverse fields of pattern recognition, machine learning, artificial neural network, and computational kinematics to present a novel approach that solves this problem both efficiently and effectively. At the heart of this approach lies an objective function that compares the motion as a whole thereby capturing designer’s intent. In contrast to widely used structural error or loop-closure equation based error functions which convolute the optimization by considering shape, size, position, and orientation simultaneously, this objective function computes motion difference in a form, which is invariant to similarity transformations. We employ auto-encoder neural networks to create a compact and clustered database of invariant motions of known linkages. The query is raised in the database for nearest neighbors, which are either solutions or good initial conditions for fast local optimization techniques. In spite of highly non-linear parameters space, our approach discovers a wide pool of defect-free solutions very quickly. We show that by employing proven machine learning techniques, this work could have far-reaching consequences to creating a multitude of useful and creative conceptual design solutions for mechanism synthesis problems, which go beyond planar four-bar linkages.


1997 ◽  
Vol 119 (3) ◽  
pp. 349-358
Author(s):  
G. R. Pennock ◽  
K. G. Mattson

This paper presents a solution to the forward position problem of two PUMA-type robots manipulating a spatial four-bar linkage payload. To simplify the kinematic analysis, the Bennett linkage, which is a special geometry spatial four-bar, will be regarded as the payload. The orientation of a specified payload link is described by a sixth-order polynomial and a specified joint displacement in the wrist subassembly of one of the robots is described by a second-order polynomial. A solution technique, based on orthogonal transformation matrices with dual number elements, is used to obtain closed-form solutions for the remaining unknown joint displacements in the wrist subassembly of each robot. An important result is that, for a given set of robot input angles, twenty-four assembly configurations of the robot-payload system are possible. Repeated roots of the polynomials are shown to correspond to the stationary configurations of the system. The paper emphasizes that an understanding of the kinematic geometry of the system is essential to verify the number of possible solutions to the forward position problem. Graphical methods are also presented to provide insight into the assembly and stationary configurations. A numerical example of the two robots manipulating the Bennett linkage is included to demonstrate the importance of the polynomial and closed-form solutions.


Author(s):  
J E Baker

A prompt contributor to discussion of Bricard's marvellous revelation of deformable octahedra was Bennett, who related the findings to planar, spherical, and skew assemblages, the last-named consisting of a network formed by his own remarkable four-bar linkage. Since that time, many investigations have been directed to each of Bricard's and Bennett's linkages, but rarely to the notion of a connection between them. The present article draws upon recent discoveries of six-bar linkages synthesized from Bennett isograms to establish a surprising integration of three different families of six-bars and the skew network engendered by the doubly collapsible octahedron.


1995 ◽  
Vol 117 (4) ◽  
pp. 597-600 ◽  
Author(s):  
K. C. Gupta ◽  
R. Ma

The necessary and sufficient conditions for the full input rotatability in a spherical four-bar linkage are proved. The direct criterion is: for all twist angles α in the range [0, π], the excess (deficit) of the sum of the frame and input twist angles over (from) π should, in absolute value, be greater than that for the coupler and follower twist angles; the difference between the follower and input twist angles, in absolute value, should be greater than that for the coupler and follower twist angles. Application of the direct criterion to full rotatability of other links are discussed and some variations in the form of the criterion are developed.


Author(s):  
P. Pracht ◽  
P. Minotti ◽  
M. Dahan

Abstract Linkages are inherently light, inexpensive, strong, adaptable to high speeds and have little friction. Moreover the class of functions suitable for linkage representation is large. For all these reasons numerous recent works deal with the problem of design mechanisms for robotic applications, but very often in terms of components such as gripper, transmission, balancing. We investigate a new application for linkages, using them to design industrial manipulator. The selected mechanism for this application is a four bar linkage with an adjustable lengh for exact path generation. This adjustment is performed by a track or cam which is substituted to a bar. By this mean, we define a cam-modulated linkage which possess superior accuracy potential and is capable of accomodating of industrial design restrictions. Such a kinematic chain is free from structural error for path generation and the presence of the track introduces the flexibility and versality in the usefull four bar chain. The synthesis technique of cam modulated linkage utilizes loop closure equations, envelop theory to find the centerline and the profile of the track. These techniques provide a systematic approach to the design of mechanism for path generation when extreme accuracy is required. In order to complete an contribution, we take in consideration the static balancing of the synthesized manipulator. To achieve static mass balancing we use the potential energy storage capabilities of linear springs, and integrated it with the non-linear motion of mechanism to provide an exact value of the desired counter loading functions. Examples are worked to demonstrate applications of these procedures and to illustrate the industrial potential of spring balancing and cam-modulated linkage.


2021 ◽  
pp. 1-20
Author(s):  
Gui Shun

Abstract Exploring the locomotion of creatures is a challenging task in bionic robots, and the existing iterative design methods are mainly based on one or two characteristics to optimize robots. However, it is hard to obtain other features. Here, we introduced the thinking of system identification theory to the bionic robots, averting the exploration of the dynamics and reducing the difficulty of design greatly. A one-DOF six-bar mechanism (Watt I) was designated as the model to be identified, and it was divided into two parts, i.e. a one-DOF four-bar linkage and a three-DOF series arm. Then we formed constraints and a loss function. The parameters of the model were identified based on the kinematic data of a marmoset jumping. As a result, we obtained the desired model. Then, a prototype derived from the model was fabricated, and the experiments verified the effectiveness of the method. Our method also can be applied to other motion simulation scenarios.


Sign in / Sign up

Export Citation Format

Share Document