A new fuzzy-logic anti-swing control for industrial three-dimensional overhead cranes

Author(s):  
He-Hoon Lee ◽  
Sung-Kun Cho
2002 ◽  
Vol 41 (2) ◽  
pp. 235-243 ◽  
Author(s):  
Sung-Kun Cho ◽  
Ho-Hoon Lee

Author(s):  
Honglei Xu ◽  
Linhuan Wang

In order to improve the accuracy of dynamic detection of wind field in the three-dimensional display space, system software is carried out on the actual scene and corresponding airborne radar observation information data, and the particle swarm algorithm fuzzy logic algorithm is introduced into the wind field dynamic simulation process in three-dimensional display space, to analyze the error of the filtering result in detail, to process the hurricane Lily Doppler radar measurement data with the optimal adaptive filtering according to the error data. The three-dimensional wind field synchronous measurement data obtained by filtering was compared with three-dimensional wind field synchronous measurement data of the GPS dropsonde in this experiment, the sea surface wind field measurement data of the multi-band microwave radiometer, and the wind field data at aircraft altitude.


2021 ◽  
Vol 15 (3) ◽  
pp. 169-176
Author(s):  
Volodymyr Morkun ◽  
Olha Kravchenko

Abstract Consideration of ultrasonic cleaning as a process with distributed parameters enables reduction of power consumption. This approach is based on establishment of control over the process depending on fixed values of ultrasonic responses in set points. The initial intensity of radiators is determined using a three-dimensional (3D) interval type-2 fuzzy logic controller essentially created for processes with distributed parameters, as well as complex expert evaluation of the input data. The interval membership functions for the input and output data consider the space heterogeneity of ultrasonic cleaning. A rule base is formed, which is 2D and not dependent upon the number of input and output parameters. A model illustrating ultrasonic cleaning with a 3D interval type-2 fuzzy logic controller is designed. Comparative analysis of the output parameters of the proposed model and the traditional method indicates an increase in the energy efficiency by 41.17% due to application of only those ultrasonic radiators that are located next to the contamination.


Sign in / Sign up

Export Citation Format

Share Document