scholarly journals Contact consistent control framework for humanoid robots

Author(s):  
Jaeheung Park ◽  
O. Khatib
2020 ◽  
pp. 1-16
Author(s):  
Si Zhang ◽  
Jinglong Wu ◽  
Qiang Huang

This paper provides a review of humanoid robots and mind control humanoid robots. Information was obtained mainly from journals and conference proceedings on robotics and mind control technology. We primarily focus on providing an overview of commercially available robots and prototype research-stage humanoid robots in addition to mind control humanoid robot systems. First, a history and overview of the humanoid robot is presented. Then, typical mind control humanoid robot systems are described, including the relevant brain-computer interface and the whole control framework. Finally, the remaining research challenges in the field of humanoid robot safety are summarized.


Author(s):  
Si Zhang ◽  
Jinglong Wu ◽  
Qiang Huang

This paper provides a review of humanoid robots and mind control humanoid robots. Information was obtained mainly from journals and conference proceedings on robotics and mind control technology. We primarily focus on providing an overview of commercially available robots and prototype research-stage humanoid robots in addition to mind control humanoid robot systems. First, a history and overview of the humanoid robot is presented. Then, typical mind control humanoid robot systems are described, including the relevant brain-computer interface and the whole control framework. Finally, the remaining research challenges in the field of humanoid robot safety are summarized.


Author(s):  
Siavash Rezazadeh ◽  
Robert D. Gregg

Although dynamic walking methods have had notable successes in control of bipedal robots in the recent years, still most of the humanoid robots rely on quasi-static Zero Moment Point controllers. This work is an attempt to design a highly stable controller for dynamic walking of a human-like model which can be used both for control of humanoid robots and prosthetic legs. The method is based on using time-based trajectories that can induce a highly stable limit cycle to the bipedal robot. The time-based nature of the controller motivates its use to entrain a model of an amputee walking, which can potentially lead to a better coordination of the interaction between the prosthesis and the human. The simulations demonstrate the stability of the controller and its robustness against external perturbations.


2013 ◽  
Vol 34 (4) ◽  
pp. 347-361 ◽  
Author(s):  
Tadej Petrič ◽  
Andrej Gams ◽  
Jan Babič ◽  
Leon Žlajpah

Author(s):  
Serena Ivaldi ◽  
Olivier Sigaud ◽  
Bastien Berret ◽  
Francesco Nori

AbstractIn the last years of research in cognitive control, neuroscience and humanoid robotics have converged to different frameworks which aim, on one side, at modeling and analyzing human motion, and, on the other side, at enhancing motor abilities of humanoids. In this paper we try to cover the gap between the two areas, giving an overview of the literature in the two fields which concerns the production of movements. First, we survey computational motor control models based on optimality principles; then, we review available implementations and techniques to transfer these principles to humanoid robots, with a focus on the limitations and possible improvements of the current implementations. Moreover, we propose Stochastic Optimal Control as a framework to take into account delays and noise, thus catching the unpredictability aspects typical of both humans and humanoids systems. Optimal Control in general can also easily be integrated with Machine Learning frameworks, thus resulting in a computational implementation of human motor learning. This survey is mainly addressed to roboticists attempting to implement human-inspired controllers on robots, but can also be of interest for researchers in other fields, such as computational motor control.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4194 ◽  
Author(s):  
Hyun-Min Joe ◽  
Jun-Ho Oh

Research on a terrain-blind walking control that can walk stably on unknown and uneven terrain is an important research field for humanoid robots to achieve human-level walking abilities, and it is still a field that needs much improvement. This paper describes the design, implementation, and experimental results of a robust balance-control framework for the stable walking of a humanoid robot on unknown and uneven terrain. For robust balance-control against disturbances caused by uneven terrain, we propose a framework that combines a capture-point controller that modifies the control reference, and a balance controller that follows its control references in a cascading structure. The capture-point controller adjusts a zero-moment point reference to stabilize the perturbed capture-point from the disturbance, and the adjusted zero-moment point reference is utilized as a control reference for the balance controller, comprised of zero-moment point, leg length, and foot orientation controllers. By adjusting the zero-moment point reference according to the disturbance, our zero-moment point controller guarantees robust zero-moment point control performance in uneven terrain, unlike previous zero-moment point controllers. In addition, for fast posture stabilization in uneven terrain, we applied a proportional-derivative admittance controller to the leg length and foot orientation controllers to rapidly adapt these parts of the robot to uneven terrain without vibration. Furthermore, to activate position or force control depending on the gait phase of a robot, we applied gain scheduling to the leg length and foot orientation controllers, which simplifies their implementation. The effectiveness of the proposed control framework was verified by stable walking performance on various uneven terrains, such as slopes, stone fields, and lawns.


Sign in / Sign up

Export Citation Format

Share Document