bipedal robot
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 83)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Chao Zhang ◽  
Peisi Zhong ◽  
Mei Liu ◽  
Qingjun Song ◽  
Zhongyuan Liang ◽  
...  

The K-Nearest Neighbor (KNN) algorithm is a classical machine learning algorithm. Most KNN algorithms are based on a single metric and do not further distinguish between repeated values in the range of K values, which can lead to a reduced classification effect and thus affect the accuracy of fault diagnosis. In this paper, a hybrid metric-based KNN algorithm is proposed to calculate a composite metric containing distance and direction information between test samples, which improves the discriminability of the samples. In the experiments, the hybrid metric KNN (HM-KNN) algorithm proposed in this paper is compared and validated with a variety of KNN algorithms based on a single distance metric on six data sets, and an HM-KNN application method is given for the forward gait stability control of a bipedal robot, where the abnormal motion is considered as a fault, and the distribution of zero moment points when the abnormal motion is generated is compared. The experimental results show that the algorithm has good data differentiation and generalization ability for different data sets, and it is feasible to apply it to the walking stability control of bipedal robots based on deep neural network control.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pravin Dangol ◽  
Eric Sihite ◽  
Alireza Ramezani

Fast constraint satisfaction, frontal dynamics stabilization, and avoiding fallovers in dynamic, bipedal walkers can be pretty challenging. The challenges include underactuation, vulnerability to external perturbations, and high computational complexity that arise when accounting for the system full-dynamics and environmental interactions. In this work, we study the potential roles of thrusters in addressing some of these locomotion challenges in bipedal robotics. We will introduce a thruster-assisted bipedal robot called Harpy. We will capitalize on Harpy’s unique design to propose an optimization-free approach to satisfy gait feasibility conditions. In this thruster-assisted legged locomotion, the reference trajectories can be manipulated to fulfill constraints brought on by ground contact and those prescribed for states and inputs. Unintended changes to the trajectories, especially those optimized to produce periodic orbits, can adversely affect gait stability and hybrid invariance. We will show our approach can still guarantee stability and hybrid invariance of the gaits by employing the thrusters in Harpy. We will also show that the thrusters can be leveraged to robustify the gaits by dodging fallovers or jumping over large obstacles.


2021 ◽  
Vol 11 (24) ◽  
pp. 11945
Author(s):  
Khoi Phan Bui ◽  
Hong Nguyen Xuan

In this paper, the problem of controlling a human-like bipedal robot while walking is studied. The control method commonly applied when controlling robots in general and bipedal robots in particular, was based on a dynamical model. This led to the need to accurately define the dynamical model of the robot. The activities of bipedal robots to replace humans, serve humans, or interact with humans are diverse and ever-changing. Accurate determination of the dynamical model of the robot is difficult because it is difficult to fully and accurately determine the dynamical quantities in the differential equations of motion of the robot. Additionally, another difficulty is that because the robot’s operation is always changing, the dynamical quantities also change. There have been a number of works applying fuzzy logic-based controllers and neural networks to control bipedal robots. These methods can overcome to some extent the uncertainties mentioned above. However, it is a challenge to build appropriate rule systems that ensure the control quality as well as the controller’s ability to perform easily and flexibly. In this paper, a method for building a fuzzy rule system suitable for bipedal robot control is proposed. The design of the motion trajectory for the robot according to the human gait and the analysis of dynamical factors affecting the equilibrium condition and the tracking trajectory were performed to provide informational data as well as parameters. Based on that, a fuzzy rule system and fuzzy controller was proposed and built, allowing a determination of the control force/moment without relying on the dynamical model of the robot. For evaluation, an exact controller based on the assumption of an accurate dynamical model, which was a two-feedback loop controller based on integrated inverse dynamics with proportional integral derivative, is also proposed. To confirm the validity of the proposed fuzzy rule system and fuzzy controller, computation and numerical simulation were performed for both types of controllers. Comparison of numerical simulation results showed that the fuzzy rule system and the fuzzy controller worked well. The proposed fuzzy rule system is simple and easy to apply.


Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 114
Author(s):  
Jiteng Yang ◽  
Wael Saab ◽  
Yujiong Liu ◽  
Pinhas Ben-Tzvi

This paper presents the design, modeling, analysis, and experimental results of a novel bipedal robotic system that utilizes two interconnected single degree-of-freedom (DOF) leg mechanisms to produce stable forward locomotion and steering. The single DOF leg is actuated via a Reuleaux triangle cam-follower mechanism to produce a constant body height foot trajectory. Kinematic analysis and dimension selection of the Reuleaux triangle mechanism is conducted first to generate the desired step height and step length. Leg sequencing is then designed to allow the robot to maintain a constant body height and forward walking velocity. Dynamic simulations and experiments are conducted to evaluate the walking and steering performance. The results show that the robot is able to control its body orientation, maintain a constant body height, and achieve quasi-static locomotion stability.


2021 ◽  
pp. 38-46
Author(s):  
Guanqun Cao ◽  
Qizhi Zhang ◽  
Yali Zhou

2021 ◽  
Author(s):  
Guillermo A. Castillo ◽  
Bowen Weng ◽  
Wei Zhang ◽  
Ayonga Hereid

2021 ◽  
pp. 103891
Author(s):  
Christos Kouppas ◽  
Mohamad Saada ◽  
Qinggang Meng ◽  
Mark King ◽  
Dennis Majoe

Sign in / Sign up

Export Citation Format

Share Document