Soft object manipulation by simultaneous control of motion and deformation

Author(s):  
M. Shibata ◽  
S. Hirai
1973 ◽  
Author(s):  
J. Barsaloux ◽  
T. J. Bouchard ◽  
S. Bush

2012 ◽  
Author(s):  
Daniel J. Weiss ◽  
Kate Chapman
Keyword(s):  

2019 ◽  
Author(s):  
Liman Hou ◽  
Marta Dueñas-Diez ◽  
Rohit Srivastava ◽  
Juan Perez-Mercader

<p></p><p>Belousov-Zhabotinsky (B-Z) reaction driven polymerization-induced self-assembly (PISA), or B-Z PISA, is a novel method for the autonomous one-pot synthesis of polymer vesicles from a macroCTA (macro chain transfer agent) and monomer solution (“soup”) containing the above and the BZ reaction components. In it, the polymerization is driven (and controlled) by periodically generated radicals generated in the oscillations of the B-Z reaction. These are inhibitor/activator radicals for the polymerization. Until now B-Z PISA has only been carried out in batch reactors. In this manuscript we present the results of running the system using a continuously stirred tank reactor (CSTR) configuration which offers some interesting advantages.Indeed, by controlling the CSTR parameters we achieve reproducible and simultaneous control of the PISA process and of the properties of the oscillatory cargo encapsulated in the resulting vesicles. Furthermore, the use of flow chemistry enables a more precise morphology control and chemical cargo tuning. Finally, in the context of biomimetic applications a CSTR operation mimics more closely the open non-equilibrium conditions of living systems and their surrounding environments.</p><p></p>


Sign in / Sign up

Export Citation Format

Share Document