polymer vesicles
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 47)

H-INDEX

45
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Elizabeth Q. Contreras

Abstract A new cementing additive is chemically engineered to react with formation fluids that act antagonistically towards cement. Engineered polymer capsules house encapsulants to react with antagonistic gases downhole like CO2 to form a more benign and beneficial material. Embedded in cement, the polymer capsules with semi-permeable shells allow fluids to permeate and react with encapsulants to produce beneficial byproducts, such as calcite and water from CO2. Reactivity between the encapsulant and antagonist gas CO2 is demonstrated using thermal gravimetric analysis (TGA) and other tests from oilfield equipment. When cement fails, casing-in-casing events, or CCA, causes antagonistic gases like CO2 to migrate to the surface. Embedded in the cement for such moments such as cement failure, additives housed within polyaramide vesicles chemically and physically intersect CO2 from gas migration events. The shape of the polyaramide additive is unique and versatile. Furthermore, because the material is polymeric, it imparts beneficial mechanical properties like elasticity to cement. A vesicle in form, this polymer allows the manufacturing of new cement additives for applications such as increasing the integrity and sustainability of oil well cement. Data also shows production of calcite by the bulk of the material. This technology applies to CO2 fixation and self-healing cement using reactive polymer vesicles.


2021 ◽  
Author(s):  
Kaushik Chakraborty ◽  
Prabir Khatua ◽  
Wataru Shinoda ◽  
Sharon M. Loverde

Nano Letters ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 7998-8007
Author(s):  
Xue Zhou ◽  
Erik Jan Cornel ◽  
Zhen Fan ◽  
Shisheng He ◽  
Jianzhong Du

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2903
Author(s):  
Hui Sun ◽  
Yin Wang ◽  
Jiahui Song

Polymer vesicles, hollow nanostructures with hydrophilic cavity and hydrophobic membrane, have shown significant potentials in biomedical applications including drug delivery, gene therapy, cancer theranostics, and so forth, due to their unique cell membrane-like structure. Incorporation with antibacterial active components like antimicrobial peptides, etc., polymer vesicles exhibited enhanced antimicrobial activity, extended circulation time, and reduced cell toxicity. Furthermore, antibacterial, and anticancer can be achieved simultaneously, opening a new avenue of the antimicrobial applications of polymer vesicles. This review seeks to highlight the state-of-the-art of antimicrobial polymer vesicles, including the design strategies and potential applications in the field of antibacterial. The structural features of polymer vesicles, preparation methods, and the combination principles with antimicrobial active components, as well as the advantages of antimicrobial polymer vesicles, will be discussed. Then, the diverse applications of antimicrobial polymer vesicles such as wide spectrum antibacterial, anti-biofilm, wound healing, and tissue engineering associated with their structure features are presented. Finally, future perspectives of polymer vesicles in the field of antibacterial is also proposed.


2021 ◽  
Author(s):  
Eri Yoshida

Abstract This paper describes that synthetic polymer vesicles undergo a human erythrocyte-like transformation in response to temperature changes. The normally biconcave discoid erythrocytes, i.e., the discocytes, are transformed into various shapes by their environmental stresses. Field emission scanning electron microscopy (FE-SEM) demonstrates that the spherical vesicles consisting of poly(methacrylic acid)-block-poly(n-butyl methacrylate-random-methacrylic acid), PMAA-b-P(BMA-r-MAA), transform into echinocyte-like crenate vesicles due to expansion by the component copolymers in being freed from the vesicle surface when heated in an aqueous methanol solution. An increase in the vesicle concentration transforms the spherical vesicles into stomatocyte-like cup-shaped vesicles via the membrane perforation or double invaginations followed by membrane coupling and fusion. Light scattering studies reveal the reversibility and repeatability of the transformations. These findings indicate that the erythrocyte transformations are attributed to the inherent property of the bilayer membrane. The polymer vesicles are helpful for a better understanding of the biomembrane.


2021 ◽  
pp. 1015-1022
Author(s):  
Xinyue Zhang ◽  
Qiutong Huang ◽  
Fangyingkai Wang ◽  
Hui Sun ◽  
Jiangang Xiao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document