scholarly journals A hybrid actuation approach for human-friendly robot design

Author(s):  
Dongjun Shin ◽  
Irene Sardellitti ◽  
Oussama Khatib
2021 ◽  
Vol 8 ◽  
Author(s):  
Qiwei Zhang ◽  
Hongbin Fang ◽  
Jian Xu

Earthworm-like robots have received great attention due to their prominent locomotion abilities in various environments. In this research, by exploiting the extraordinary three-dimensional (3D) deformability of the Yoshimura-origami structure, the state of the art of earthworm-like robots is significantly advanced by enhancing the locomotion capability from 2D to 3D. Specifically, by introducing into the virtual creases, kinematics of the non-rigid-foldable Yoshimura-ori structure is systematically analyzed. In addition to exhibiting large axial deformation, the Yoshimura-ori structure could also bend toward different directions, which, therefore, significantly expands the reachable workspace and makes it possible for the robot to perform turning and rising motions. Based on prototypes made of PETE film, mechanical properties of the Yoshimura-ori structure are also evaluated experimentally, which provides useful guidelines for robot design. With the Yoshimura-ori structure as the skeleton of the robot, a hybrid actuation mechanism consisting of SMA springs, pneumatic balloons, and electromagnets is then proposed and embedded into the robot: the SMA springs are used to bend the origami segments for turning and rising motion, the pneumatic balloons are employed for extending and contracting the origami segments, and the electromagnets serve as anchoring devices. Learning from the earthworm’s locomotion mechanism--retrograde peristalsis wave, locomotion gaits are designed for controlling the robot. Experimental tests indicate that the robot could achieve effective rectilinear, turning, and rising locomotion, thus demonstrating the unique 3D locomotion capability.


Author(s):  
Dong He ◽  
Zhihong Sun ◽  
W. J. Zhang

Hybrid actuation robotic systems are mechanical systems that contain both servomotors and constant-velocity (CV) motors. Due to this nature of hybrid actuation, design of hybrid actuation robots is governed by both mechanism and robot design theories and methodologies. For instance, the path generation problem in mechanism design may take advantage of the effect of the servomotor for its real-time adjusting function, for which inverse kinematics needs to be established on the servomotor. In this paper, we first generalize four types of path design problems. We then present a general formulation of inverse kinematics for a five-bar hybrid actuation robot and compare two specific approaches to inverse kinematics in the literature in terms of of their computation and suitability to the path design of hybrid actuation robots. Finally, we extend the result for the five-bar hybrid actuation robot to a general hybrid actuation robot.


Author(s):  
Diego S.Dantonio ◽  
Gustavo A. Cardona ◽  
David Saldana
Keyword(s):  

2020 ◽  
Vol 17 (03) ◽  
pp. 2050010
Author(s):  
Saeed Saeedvand ◽  
Hadi S. Aghdasi ◽  
Jacky Baltes

Although there are several popular and capable humanoid robot designs available in the kid-size range, they lack some important characteristics: affordability, being user-friendly, using a wide-angle camera, sufficient computational resources for advanced AI algorithms, and mechanical robustness and stability are the most important ones. Recent advances in 3D printer technology enables researchers to move from model to physical implementation relatively easy. Therefore, we introduce a novel fully 3D printed open platform humanoid robot design named ARC. In this paper, we discuss the mechanical structure and software architecture. We show the capabilities of the ARC design in a series of experimental evaluations.


Author(s):  
Zhuohua Shen ◽  
Justin Seipel

Although legged locomotion is better at tackling complicated terrains compared with wheeled locomotion, legged robots are rare, in part, because of the lack of simple design tools. The dynamics governing legged locomotion are generally nonlinear and hybrid (piecewise-continuous) and so require numerical simulation for analysis and are not easily applied to robot designs. During the past decade, a few approximated analytical solutions of Spring-Loaded Inverted Pendulum (SLIP), a canonical model in legged locomotion, have been developed. However, SLIP is energy conserving and cannot predict the dynamical stability of real-world legged locomotion. To develop new analytical tools for legged robot designs, we first analytically solved SLIP in a new way. Then based on SLIP solution, we developed an analytical solution of a hip-actuated Spring-Loaded Inverted Pendulum (hip-actuated-SLIP) model, which is more biologically relevant and stable than the canonical energy conserving SLIP model. The analytical approximations offered here for SLIP and the hip actuated-SLIP solutions compare well with the numerical simulations of each. The analytical solutions presented here are simpler in form than those resulting from existing analytical approximations. The analytical solutions of SLIP and the hip actuated-SLIP can be used as tools for robot design or for generating biological hypotheses.


Sign in / Sign up

Export Citation Format

Share Document